Can one see the signs of structure constants?
Algebra i analiz, Tome 19 (2007) no. 4, pp. 34-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is described how one can see the signs of action structure constants directly in the weight diagram of microweight and adjoint representations for groups of types $\mathrm{E}_6$, $\mathrm{E}_7$ and $\mathrm{E}_8$. This generalizes the results of the preceding paper, “A third look at weight diagrams”, where a similar algorithm was discussed for microweight representations of $\mathrm{E}_6$ and $\mathrm{E}_7$. The proofs are purely combinatorial and can be viewed as an elementary construction of Lie algebras and Chevalley groups of types $\mathrm{E}_l$ .
Keywords: Microweight representation, adjoint representation, weight diagram
Mots-clés : structure constants.
@article{AA_2007_19_4_a1,
     author = {N. A. Vavilov},
     title = {Can one see the signs of structure constants?},
     journal = {Algebra i analiz},
     pages = {34--68},
     year = {2007},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Can one see the signs of structure constants?
JO  - Algebra i analiz
PY  - 2007
SP  - 34
EP  - 68
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_4_a1/
LA  - ru
ID  - AA_2007_19_4_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Can one see the signs of structure constants?
%J Algebra i analiz
%D 2007
%P 34-68
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/AA_2007_19_4_a1/
%G ru
%F AA_2007_19_4_a1
N. A. Vavilov. Can one see the signs of structure constants?. Algebra i analiz, Tome 19 (2007) no. 4, pp. 34-68. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a1/

[1] Borel A., Svoistva i lineinye predstavleniya grupp Shevalle, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[2] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 ; Группы и алгебры Ли, Гл. VII, VIII, 1978 | MR | Zbl

[3] Vavilov N. A., “Razlozhenie unipotentov v prisoedinennom predstavlenii gruppy Shevalle tipa $\mathrm{E}_6$”, Algebra i analiz (to appear)

[4] Vavilov N. A., Gavrilovich M. R., “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl

[5] Vavilov N. A., Gavrilovich M. R., Nikolenko S. I., “Stroenie grupp Shevalle: Dokazatelstvo iz knigi”, Zap. nauchn. sem. POMI, 330, 2006, 36–76 | MR | Zbl

[6] Vavilov N. A., Luzgarev A. Yu., Pevzner I. M., “Gruppa Shevalle tipa $\mathrm{E}_6$ v 27-mernom predstavlenii”, Zap. nauchn. sem. POMI, 338, 2006, 5–68 | Zbl

[7] Vavilov N. A., Nikolenko S. I., “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipa $\mathrm{F}_4$”, Algebra i analiz, 20:4 (2008), 27–63 | MR

[8] Vavilov N. A., Plotkin E. B., “Setevye podgruppy grupp Shevalle”, Zap. nauchn. sem. LOMI, 94, 1979, 40–49 | MR | Zbl

[9] Vavilov N. A., Plotkin E. B., Stepanov A. V., “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 307:4 (1989), 788–791 | MR | Zbl

[10] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., “Stroenie grupp i algebr Li”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 41, VINITI, M., 1990, 5–253 | MR

[11] Vinberg E. B., Elashvili A. G., “Klassifikatsiya trivektorov devyatimernogo prostranstva”, Tr. Sem. po vekt. i tenzor. anal., 18, 1978, 197–233 | MR | Zbl

[12] Semenov N. S., “Diagrammy Khasse i motivy odnorodnykh proektivnykh mnogoobrazii”, Zap. nauchn. sem. POMI, 330, 2006, 236–246 | Zbl

[13] Springer T. A., “Lineinye algebraicheskie gruppy”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR

[14] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[15] Khamfri Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[16] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[17] Azad H., Barry M., Seitz G. M., “On the structure of parabolic subgroups”, Comm. Algebra, 18 (1990), 551–562 | DOI | MR | Zbl

[18] Baez J. C., “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 145–205 | DOI | MR | Zbl

[19] Baston R. J., Eastwood M. G., The Penrose transform. Its interactions with representation theory, Claredon Press, New York, 1989 | MR | Zbl

[20] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989 | MR | Zbl

[21] Brylinski R., Kostant B., “Minimal representations of $\mathrm{E}_6$, $\mathrm{E}_7$ and $\mathrm{E}_8$ and the generalized Capelli identity”, Proc. Nat. Acad. Sci. U.S.A., 91 (1994), 2469–2472 | DOI | MR | Zbl

[22] Burgoyne N., Williamson C., Some computations involving simple Lie algebras, Proc. 2nd Sympos. Symbolic and Algebraic Manipulation, Ass. Comput. Mach., New York, 1971

[23] Carter R. W., Simple groups of Lie type, John Wiley and Sons, New York, 1989 | MR | Zbl

[24] Chaput P.-E., Manivel L., Perrin N., Quantum cohomology of minuscule homogeneous spaces, , 2006 arXiv: /math.AG/0607492 | MR

[25] Cohen A. M., “Point-line spaces related to buildings”, Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, 647–737 | MR | Zbl

[26] Cohen A. M., Cushman R. H., “Gröbner bases and standard monomial theory”, Computational Algebraic Geometry (Nice, 1992), Progr. Math., 109, Birkhäuser, Boston, MA, 1993, 41–60 | MR | Zbl

[27] Cohen A. M., Griess R. L., Lisser B., “The group $L(2,61)$ embeds in the Lie group of type $\mathrm{E}_8$”, Comm. Algebra, 21:6 (1993), 1889–1907 | DOI | MR | Zbl

[28] Curtis C. W., Iwahori N., Kilmoyer R., “Hecke algebras and characters of parabolic type of finite groups with $(B,N)$-pairs”, Inst. Hautes Études Sci. Publ. Math., 40, 1971, 81–116 | MR | Zbl

[29] Donnelly R. G., The numbers game, geometric representations of Coxeter groups and Dynkin diagram classification results, , 2006 arXiv: /math.CO/0610702 | MR

[30] Everitt B., “Coxeter groups and hyperbolic manifolds”, Math. Ann., 330:1 (2004), 127–150 | DOI | MR | Zbl

[31] Frenkel I. B., Kac V., “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math., 62:1 (1980), 23–66 | DOI | MR | Zbl

[32] Frenkel I. B., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure Appl. Math., 134, Acad. Press, Boston, MA, 1988 | MR | Zbl

[33] Gilkey P., Seitz G. M., “Some representations of exceptional Lie algebras”, Geometries and Groups (Noordwijkerhout, 1986), Geom. Dedicata, 25, no. 1–3, 1988, 407–416 | MR | Zbl

[34] Grélaud G., Quitté Cl., Tauvel P., Bases de Chevalley et $\mathfrak{sl}(2)$-triplets des algèbres de Lie simples exceptionnelles, Prepubl. No 52, Univ. Poitiers, 1990

[35] Hiller H., Geometry of Coxeter groups, Res. Notes in Math., 54, Pitman, Boston, MA-London, 1982 | MR | Zbl

[36] Howe R., “Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond”, The Schur Lectures, Israel Math. Conf. Proc. (Tel Aviv, 1992), 8, Bar-Ilan Univ., Ramat Gan, 1995, 1–182 | MR | Zbl

[37] Iliev A., Manivel L., “The Chow ring of the Cayley plane”, Compositio Math., 141 (2005), 146–160 | DOI | MR | Zbl

[38] Joseph A., Quantum groups and their primitive ideals, Ergeb. Math. Grenzgeb. (3), 29, Springer-Verlag, Berlin, 1995 | MR

[39] Kac V., Infinite-dimensional Lie algebras, 2nd ed., Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl

[40] Kashiwara M., “Crystalizing the $q$-analogue of universal enveloping algebras”, Comm. Math. Phys., 133 (1990), 249–260 | DOI | MR | Zbl

[41] Kashiwara M., “On crystal bases of $Q$-analogue of universal enveloping algebras”, Duke Math. J., 63 (1991), 465–516 | DOI | MR | Zbl

[42] Kashiwara M., Nakashima T., “Crystal graphs for representations of the $q$-analogue of classical Lie algebras”, J. Algebra, 165 (1994), 295–345 | DOI | MR | Zbl

[43] Lakshmibai V., Seshadri C. S., “Geometry of $G/P$, V”, J. Algebra, 100 (1986), 462–557 | DOI | MR | Zbl

[44] Lakshmibai V., Seshadri C. S., “Standard monomial theory”, Hyderabad Conf. on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, 279–322 | MR | Zbl

[45] Lichtenstein W., “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl

[46] Littelmann P., “Crystal graphs and Young tableaux”, J. Algebra, 175:1 (1995), 65–87 | DOI | MR | Zbl

[47] Littelmann P., “Paths and root operators in representation theory”, Ann. of Math. (2), 142 (1995), 499–525 | DOI | MR | Zbl

[48] Littelmann P., “The path model for representations of symmetrizable Kac-Moody algebras”, Proc. of Internat. Congr. Math., V. 1 (Zürich, 1994), Birkhäuser, Basel, 1995, 298–308 | MR | Zbl

[49] Lusztig G., “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl

[50] Lusztig G., “Canonical bases arising from quantized enveloping algebras, II”, Common trends in mathematics and quantum field theories (Kyoto, 1990), Progr. Theoret. Phys. Suppl., 102 (1990), 1991, 175–201 | MR

[51] Lusztig G., Introduction to quantum groups, Progr. Math., 110, Birkhäuser, Boston, MA, 1993 | MR | Zbl

[52] Marsh R. J., On the adjoint module of a quantum group, Preprint No 79, Univ. Warwick, 1994 | MR

[53] Mathieu O., “Bases des représentations des groupes simples complexes”, Séminaire Bourbaki, (1990–1991), no. 201–203, eds. Kashiwara, Lusztig, Ringel et al., 1991; Astérisque, 743, 1992, 421–442

[54] Mathieu O., “Le modéle des chemins”, Séminaire Bourbaki, (1994–1995), no. 237, eds. P. Littelmann; Astérisque, 798, no. 4, 1996, 209–224 | MR | Zbl

[55] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[56] Michel L., Patera J., Sharp R., “The Demazure-Tits subgroup of a simple Lie group”, J. Math. Phys., 29:4 (1988), 777–796 | DOI | MR | Zbl

[57] Mizuno K., “The conjugate classes of Chevalley groups of type $\mathrm{E}_6$”, J. Fac. Sci. Univ. Tokyo. Sect. LA Math., 24:3 (1977), 525–563 | MR | Zbl

[58] Mizuno K., “The conjugate classes of unipotent elements of the Chevalley groups $\mathrm{E}_6$ and $\mathrm{E}_8$”, Tokyo J. Math., 3:2 (1980), 391–461 | MR

[59] Nikolenko S., Semenov N., Chow ring structure made simple, , 2006 arXiv: /math.AG/0606335

[60] Nikolenko S., Semenov N., Zainoulline K., Motivic decomposition of anisotropic varieties of type $\mathrm{E}_8$ and generalized Rost motives, arXiv: /math.AG/0502382

[61] Parker Ch., Röhrle G. E., Minuscule representations, Preprint No 72, Univ. Bielefeld, 1993

[62] Parker Ch., Röhrle G. E., “The restriction of minuscule representations to parabolic subgroups”, Math. Proc. Cambridge Philos. Soc., 135:1 (2003), 59–79 | DOI | MR | Zbl

[63] Petrov V., Semenov N., Zainoulline K., Zero cycles on a twisted Cayley plane, arXiv: /math.AG/0508200v2 | MR

[64] Plotkin E. B., “Stability theorems for $k_1$-functor for Chevalley groups”, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge, 1991, 203–217 | MR | Zbl

[65] Plotkin E. B., “On the stability of the $K_1$-functor for Chevalley groups of type $\mathrm{E}_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl

[66] Plotkin E. B., Semenov A. A., Vavilov N. A., “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[67] Proctor R. A., “Bruhat lattices, plane partition generating functions, and minuscule representations”, European J. Combin., 5 (1984), 331–350 | MR | Zbl

[68] Proctor R. A., “A Dynkin diagram classification theorem arising from a combinatorial problem”, Adv. Math., 62:2 (1986), 103–117 | DOI | MR | Zbl

[69] Proctor R. A., “Minuscule elements of Weyl groups, the numbers game, and $d$-complete posets”, J. Algebra, 213 (1999), 272–303 | DOI | MR | Zbl

[70] Proctor R. A., “Dynkin diagram classification of $\lambda$-minuscule Bruhat lattices and of $d$-complete posets”, J. Algebraic Combin., 9:1 (1999), 61–94 | DOI | MR | Zbl

[71] Ringel C. M., “Hall polynomials for the representation-finite hereditary algebras”, Adv. Math., 84 (1990), 137–178 | DOI | MR | Zbl

[72] Röhrle G. E., “On the structure of parabolic subgroups in algebraic groups”, J. Algebra, 157:1 (1993), 80–115 | DOI | MR | Zbl

[73] Scharlau R., Buildings, Handbook of Incidence Geometry, North Holland, Amsterdam, 1995, 477–645 | MR | Zbl

[74] Segal G., “Unitary representations of some infinite-dimensional groups”, Comm. Math. Phys., 80 (1981), 301–342 | DOI | MR | Zbl

[75] Seshadri C. S., Geometry of G/P. I., “Theory of standard monomials for minuscule representations”, C. P. Ramanujam – a Tribute, Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin-New York, 1978, 207–239 | MR

[76] Springer T. A., Linear algebraic groups, 2nd ed., Progr. Math., 9, Birkhäuser, Boston, MA, 1981 | MR | Zbl

[77] Stein M. R., “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[78] Stein M. R., “Stability theorems for $\mathrm{K}_1$, $\mathrm{K}_1$K2 and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl

[79] Stembridge J. R., “On minuscule representations, plane partitions and involutions in complex Lie groups”, Duke Math. J., 73:2 (1994), 469–490 | DOI | MR | Zbl

[80] Stembridge J. R., “Quasi-minuscule quotients and reduced words for reflections”, J. Algebraic Combin., 13:3 (2001), 275–293 | DOI | MR | Zbl

[81] Stepanov A. V., Vavilov N. A., “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[82] Thomas H., Yong A., A combinatorial rule for (co)minuscule Schubert calculus, Preprint UCLA, 2006

[83] Tits J., “Sur les constantes de structure et le théorème d'existence des algébres de Lie semi-simples”, Inst. Hautes Études Sci. Publ. Math., 31, 1966, 21–58 | MR

[84] Vavilov N. A., “Structure of Chevalley groups over commutative rings”, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[85] Vavilov N. A., “Intermediate subgroups in Chevalley groups”, Groups of Lie Type and their Geometries (Como, 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, 233–280 | MR | Zbl

[86] Vavilov N. A., “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104:1 (2000), 201–250 | MR | Zbl

[87] Vavilov N. A., “Do it yourself structure constants for Lie algebras of type $\mathrm E_l$”, Zap. nauchn. sem. POMI, 281, 2001, 60–104 | MR | Zbl

[88] Vavilov N. A., “An $\mathrm{A}_3$-proof of structure theorems for Chevalley groups of types $\mathrm{E}_7$ and $\mathrm{E}_7$”, J. Pure Appl. Algebra (to appear)

[89] Vavilov N. A., Plotkin E. B., “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl

[90] Wildberger N. J., A combinatorial construction for simply-laced Lie algebras, Preprint, Univ. New South Wales, 2000, 11 pp. | MR

[91] Wildberger N. J., Minuscule posets from neighbourly graph sequences, Preprint, Univ. New South Wales, 2001, 19 pp. | MR | Zbl

[92] Wildberger N. J., An easy construction of $\mathrm{G}_2$, Preprint, Univ. New South Wales, 2001, 9 pp. | MR | Zbl