One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations
Algebra i analiz, Tome 19 (2007) no. 3, pp. 151-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-dimensional $\mathcal{L}$ quasilattices $\mathcal{F}^2=\mathcal{F}\times\mathcal{F}$ lying in the square Fibonacci quasilattice are classified; here $\mathcal{F}$ is the one-dimensional Fibonacci quasilattice. It is proved that there exists a countable set of similarity classes of quasilattices $\mathcal{L}$ in $\mathcal{F}^2$ (fine classification), and also four classes of local equivalence (rough classification). Asymptotic distributions of points in quasilattices $\mathcal{L}$ are found and then applied to Diophantine equations involving the function $[\alpha]$ (the integral part of $\alpha$) and to equations of the form $A_1\circ X_1-A_2\circ X_2=C$ where the coefficients $C$ and $A_i$ and the variables take values in $\mathbb {N}=\{1,2,3,\dots\}$ and $\circ$ is Knuth's circular multiplication.
Keywords: Fibonacci quasilattices, Diophantine equations, Knuth's circular multiplication.
@article{AA_2007_19_3_a4,
     author = {V. G. Zhuravlev},
     title = {One-dimensional {Fibonacci} quasilattices and their application to the {Euclidean} algorithm and {Diophantine} equations},
     journal = {Algebra i analiz},
     pages = {151--182},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_3_a4/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations
JO  - Algebra i analiz
PY  - 2007
SP  - 151
EP  - 182
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_3_a4/
LA  - ru
ID  - AA_2007_19_3_a4
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations
%J Algebra i analiz
%D 2007
%P 151-182
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_3_a4/
%G ru
%F AA_2007_19_3_a4
V. G. Zhuravlev. One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations. Algebra i analiz, Tome 19 (2007) no. 3, pp. 151-182. http://geodesic.mathdoc.fr/item/AA_2007_19_3_a4/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, 3-e izd., Nauka, M., 1985 | MR | Zbl

[2] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Trudy 17-i Mezhdunarodnoi letnei shkoly-seminara po sovremennym problemam teoreticheskoi i matematicheskoi fiziki, Kazan, 2005, 40–55

[3] Zhuravlev V. G., “Summy kvadratov nad $\circ$-koltsom Fibonachchi”, Zap. nauch. semin. POMI, 337, 2006, 165–190 | MR | Zbl

[4] Cooke G., “A weakening of the Euclidean property for integral domains and applications to algebraic number theory, I”, J. Reine Angew. Math., 282 (1976), 133–156 | MR | Zbl

[5] Fogg N. P., Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, Springer-Verlag, Berlin, 2002 | MR | Zbl

[6] Knuth D. E., “Fibonacci multiplication”, Appl. Math. Lett., 1 (1988), 57–60 | DOI | MR | Zbl

[7] Lifshitz R., “The square Fibonacci tiling”, J. Alloys Compounds, 342 (2002), 186–190 | DOI

[8] Matiyasevich Yu. V., “Svyaz sistem uravnenii v slovakh i dlinakh s 10-i problemoi Gilberta”, Zap. nauch. semin. LOMI, 8, 1968, 132–144 | Zbl

[9] Matiyasevich Yu. V., “Dve reduktsii 10-i problemy Gilberta”, Zap. nauch. semin. LOMI, 8, 1968, 145–158 | Zbl

[10] Moody R. V., “Model sets: a survey”, Quasicrystals to More Complex Systems, eds. F. Alex, F. Dénoyer, J. P. Gazeau, EPD Science, Les Ulis, and Springer-Verlag, Berlin, 2000, 145–166