$J_{p,m}$-inner dilations of matrix-valued functions that belong to the Carath\'odory class and admit pseudocontinuation
Algebra i analiz, Tome 19 (2007) no. 3, pp. 76-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class $\ell^{p\times p}$ of matrix-valued functions $c(z)$ holomorphic in the unit disk $D=\{{z\in\mathbb{C}:|z|1}\}$, having order $p$, and satisfying $\operatorname{Re}c(z)\ge 0$ in $D$ is considered, as well as its subclass $\ell^{p\times p}\Pi$ of matrix-valued functions $c(z)\in \ell^{p\times p}$ that have a meromorphic pseudocontinuation $c_-(z)$ to the complement $D_e=\{z\in\mathbb{C}:1|z|\le\infty\}$ of the unit disk with bounded Nevanlinna characteristic in $D_e$. For matrix-valued functions $c(z)$ of class $\ell^{p\times p}\Pi$ a representation as a block of a certain $J_{p,m}$-inner matrix-valued function $\theta(z)$ is obtained. The latter function has a special structure and is called the $J_{p,m}$-inner dilation of $c(z)$. The description of all such representations is given. In addition, the following special $J_{p,m}$-inner dilations are considered and described: minimal, optimal, $*$-optimal, minimal and optimal, minimal and $*$-optimal. Also, $J_{p,m}$-inner dilations with additional properties are treated: real, symmetric, rational, or any combination of them under the corresponding restrictions on the matrix-valued function $c(z)$. The results extend to the case where the open upper half-plane $\mathbb{C}_+$ is considered instead of the unit disk $D$. For entire matrix-valued functions $c(z)$ with $\operatorname{Re}c(z)\ge 0$ in $\mathbb{C_+}$ and with Nevanlinna characteristic in $\mathbb{C}_-$, the $J_{p,m}$-inner dilations in $\mathbb{C}_+$ that are entire matrix-valued functions are also described.
Keywords: Holomorphic matrix-valued functions, dilations, pseudocontinuation.
@article{AA_2007_19_3_a1,
     author = {D. Z. Arov and N. A. Rozhenko},
     title = {$J_{p,m}$-inner dilations of matrix-valued functions that belong to the {Carath\'odory} class and admit pseudocontinuation},
     journal = {Algebra i analiz},
     pages = {76--105},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_3_a1/}
}
TY  - JOUR
AU  - D. Z. Arov
AU  - N. A. Rozhenko
TI  - $J_{p,m}$-inner dilations of matrix-valued functions that belong to the Carath\'odory class and admit pseudocontinuation
JO  - Algebra i analiz
PY  - 2007
SP  - 76
EP  - 105
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_3_a1/
LA  - ru
ID  - AA_2007_19_3_a1
ER  - 
%0 Journal Article
%A D. Z. Arov
%A N. A. Rozhenko
%T $J_{p,m}$-inner dilations of matrix-valued functions that belong to the Carath\'odory class and admit pseudocontinuation
%J Algebra i analiz
%D 2007
%P 76-105
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_3_a1/
%G ru
%F AA_2007_19_3_a1
D. Z. Arov; N. A. Rozhenko. $J_{p,m}$-inner dilations of matrix-valued functions that belong to the Carath\'odory class and admit pseudocontinuation. Algebra i analiz, Tome 19 (2007) no. 3, pp. 76-105. http://geodesic.mathdoc.fr/item/AA_2007_19_3_a1/

[1] Arov D. Z., “O metode Darlingtona v issledovanii dissipativnykh sistem”, Dokl. AN SSSR, 201:3 (1971), 559–562 | MR | Zbl

[2] Arov D. Z., “Realizatsiya matrits-funktsii po Darlingtonu”, Izv. AN SSSR. Ser. mat., 37:6 (1973), 1299–1331 | MR | Zbl

[3] Arov D. Z., “Realizatsiya kanonicheskoi sistemy s dissipativnym granichnym usloviem na odnom kontse segmenta po koeffitsientu dinamicheskoi podatlivosti”, Sib. matem. zhurn., 16:3 (1975), 440–463 | MR | Zbl

[4] Arov D. Z., “Passivnye lineinye statsionarnye dinamicheskie sistemy”, Sib. matem. zhurn., 20:2 (1979), 211–228 | MR | Zbl

[5] Arov D. Z., “Optimalnye i ustoichivye passivnye sistemy”, Dokl. AN SSSR, 247:2 (1979), 265–268 | MR | Zbl

[6] Arov D. Z., “Ustoichivye dissipativnye lineinye statsionarnye dinamicheskie sistemy rasseyaniya”, J. Operator Theory, 2:1 (1979), 95–126 | MR | Zbl

[7] Arov D. Z., “O funktsiyakh klassa $\Pi$”, Zap. nauch. semin. LOMI, 135, 1984, 5–30 | MR | Zbl

[8] Arov D. Z., Nudelman M. A., “Priznaki podobiya vsekh minimalnykh passivnykh realizatsii zadannoi peredatochnoi funktsii (matritsy rasseyaniya ili soprotivleniya)”, Matem. sb., 193:6 (2002), 3–24 | MR | Zbl

[9] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[10] Douglas R. G., Shapiro H. S., Shields A. L., “On cyclic vectors of the backward shift”, Bull. Amer. Math. Soc., 73 (1967), 156–159 | DOI | MR | Zbl

[11] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[12] Rosenblum M., Rovnyak J., Hardy classes and operator theory, Oxford Univ. Press, Oxford, 1985 | MR

[13] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950

[14] Ginzburg Yu. P., “O $J$-nerastyagivayuschikh operatorakh v gilbertovom prostranstve”, Nauch. zap. fiz.-mat. fak. Odessk. gos. ped. in-ta, 22:1 (1958), 13–20. | MR

[15] Douglas R. G., Helton J. W., “Inner dilations of analytic matrix functions and Darlington synthesis”, Acta Sci. Math. (Szeged), 34 (1973), 61–67 | MR | Zbl

[16] Grenander U., Szegö G., Toeplitz forms and their applications, Univ. California Press, Berkeley-Los Angeles, 1958 | MR | Zbl

[17] Katsnelson V. E., Kirstein B., “On the theory of matrix-valued functions belonging to the Smirnov class”, Topics in Interpolation Theory (Leipzig, 1994), Oper. Theory Adv. Appl., 95, eds. H. Dym, B. Fritsche, V. Katsnelson, B. Kirstein, Birkhäuser, Basel, 1997, 299–350 | MR | Zbl

[18] Lindquist A., Pavon M., “On the structure of state-space models for discrete-time stochastic vector processes”, IEEE Trans. Automat. Control, 29:5 (1984), 418–432 | DOI | MR | Zbl

[19] Lindquist A., Picci G., “On a condition for minimality of Markovian splitting subspaces”, Systems Control Lett., 1:4 (1981–1982), 264–269 | DOI | MR

[20] Lindquist A., Picci G., “Realization theory for multivariate stationary Gaussian processes”, SIAM J. Control Optim., 23:6 (1985), 809–857 | DOI | MR | Zbl