Spectral subspaces of~$L^p$ for $p1$
Algebra i analiz, Tome 19 (2007) no. 3, pp. 1-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be an open subset of $\mathbb{R}^n$. Denote by $L^p_{\Omega}(\mathbb{R}^n)$ the closure in $L^p(\mathbb{R}^n)$ of the set of all functions $\varepsilon\in L^1(\mathbb{R}^n)\cap L^p(\mathbb{R}^n)$ whose Fourier transform has compact support contained in $\Omega$. The subspaces of the form $L^p_\Omega(\mathbb{R}^n)$ are called the spectral subspaces of $L^p(\mathbb{R}^n)$. It is easily seen that each spectral subspace is translation invariant; i.e., $f(x+a)\in L^p_\Omega(\mathbb{R}^n)$ for all $f\in L^p_\Omega(\mathbb{R}^n)$ and $a\in\mathbb{R}^n$. Sufficient conditions are given for the coincidence of $L^p_\Omega(\mathbb{R}^n)$ and $L^p(\mathbb{R}^n)$. In particular, an example of a set $\Omega$ is constructed such that the above spaces coincide for sufficiently small $p$ but not for all $p\in(0,1)$. Moreover, the boundedness of the functional $f\mapsto(\mathcal{F} f)(a)$ with $a\in\Omega$, which is defined initially for sufficiently “good” functions in $L^p_\Omega(\mathbb{R}^n)$, is investigated. In particular, estimates of the norm of this functional are obtained. Also, similar questions are considered for spectral subspaces of $L^p(G)$, where $G$ is a locally compact Abelian group.
Keywords: Translation invariant subspace, spectral subspace, Hardy classes, uniqueness set.
@article{AA_2007_19_3_a0,
     author = {A. B. Aleksandrov},
     title = {Spectral subspaces of~$L^p$ for $p<1$},
     journal = {Algebra i analiz},
     pages = {1--75},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_3_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Spectral subspaces of~$L^p$ for $p<1$
JO  - Algebra i analiz
PY  - 2007
SP  - 1
EP  - 75
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_3_a0/
LA  - ru
ID  - AA_2007_19_3_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Spectral subspaces of~$L^p$ for $p<1$
%J Algebra i analiz
%D 2007
%P 1-75
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_3_a0/
%G ru
%F AA_2007_19_3_a0
A. B. Aleksandrov. Spectral subspaces of~$L^p$ for $p<1$. Algebra i analiz, Tome 19 (2007) no. 3, pp. 1-75. http://geodesic.mathdoc.fr/item/AA_2007_19_3_a0/

[1] Aleksandrov A. B., “Essays on nonlocally convex Hardy classes”, Complex Analysis and Spectral Theory (Leningrad, 1979–1980), Lecture Notes in Math., 864, Springer, Berlin-New York, 1981, 1–89 | MR

[2] Aleksandrov A. B., “A class of interpolating Blaschke products and best approximation in $L^p$ for $p1$”, Comput. Methods Funct. Theory, 2:2 (2002), 549–578 | MR | Zbl

[3] Aleksandrov A. B., “Badly approximable unimodular functions in weighted $L^p$ spaces”, Comput. Methods Funct. Theory, 4:2 (2004), 315–326 | MR | Zbl

[4] Aleksandrov A. B., Kargaev P. P., “Klassy Khardi garmonicheskikh v poluprostranstve funktsii”, Algebra i analiz, 5:2 (1993), 1–73 | MR | Zbl

[5] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 3–22 | MR | Zbl

[6] Atzmon A., Olevskii A., “Completeness of integer translates in function spaces on $R$”, J. Approx. Theory, 87:3 (1996), 291–327 | DOI | MR | Zbl

[7] Carleson L., “wo remarks on $H^1$ and BMO”, Adv. Math., 22:3 (1976), 269–277 | DOI | MR | Zbl

[8] de Leeuw K., “The failure of spectral analysis in $L^p$ for $0

1$”, Bull. Amer. Math. Soc., 82:1 (1976), 111–114 | DOI | MR | Zbl

[9] Duren P. L., Romberg B. W., Shields A. L., “Linear functionals on $H^p$ spaces with $0

1$”, J. Reine Angew. Math., 238 (1969), 32–60 | MR | Zbl

[10] Favorov S. Yu., “Raspredelenie znachenii golomorfnykh otobrazhenii $C^m$ v banakhovo prostranstvo”, Funkts. analiz i ego pril., 21:3 (1987), 91–92 | MR | Zbl

[11] Favorov S. Yu., “A generalized Kahane–Khinchin inequality”, Studia Math., 130:2 (1998), 101–107 | MR | Zbl

[12] Fefferman C., Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl

[13] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[14] García-Cuerva J., Rubio de Francia J. L., Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, North-Holland Publishing Co., Amsterdam, 1985 | MR | Zbl

[15] Gorin E. A., Favorov S. Yu., “Obobscheniya neravenstva Khinchina”, TVP, 35:4 (1990), 762–767 | MR

[16] von Golitschek M. V., Lorentz G. G., “Bernstein inequalities in $L_p$, $0\leq p\leq+\infty$”, Rocky Mountain J. Math., 19:1 (1989), 145–156 | MR

[17] Havin V., Jöricke B., The uncertainty principle in harmonic analysis, Ergeb. Math. Grenzgeb. (3), 28, Springer-Verlag, Berlin, 1994 | MR | Zbl

[18] John F., “Extremum problems with inequalities as subsidiary conditions”, Studies and Essays Presented to R. Courant on his 60th Birthday (January 8, 1948), Intersci. Publishers, New York, 1948, 187–204 | MR

[19] Kakhan Zh.-P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976

[20] Morris S., Dvoistvennost Pontryagina i stroenie lokalno kompaktnykh abelevykh grupp, Mir, M., 1980 | MR | Zbl

[21] Nikolski N. K., Operators, functions, and systems: an easy reading. V. 1. Hardy, Hankel, and Toeplitz, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[22] Oberlin D. M., “Translation-invariant operators on $L^p(G)$, $0

1$, II”, Canad. J. Math., 29:3 (1977), 626–630 | MR | Zbl

[23] Olevskii A., “Completeness in $L^2\mathbf(R)$ of almost integer translates”, C. R. Acad. Sci. Paris Sér. I Math., 324:9 (1997), 987–991 | MR | Zbl

[24] Olevski A., Ulanovskii A., “Almost integer translates. Do nice generator exist?”, J. Fourier Anal. Appl., 10:1 (2004), 93–104 | DOI | MR | Zbl

[25] Roth K., “Sur quelques ensembles d'entiers”, C. R. Acad. Sci. Paris, 234 (1952), 388–390 | MR | Zbl

[26] Rudin W., Fourier analysis on groups, Reprint of the 1962 original, Wiley Classics Library, A Wiley-Intersci. Publ., John Wiley and Sons, New York, 1990 | MR | Zbl

[27] Shapiro J. H., “Subspaces of $L^p(G)$ spanned by characters: $0

1$”, Israel J. Math., 29:2–3 (1978), 248–264 | DOI | MR | Zbl

[28] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[29] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[30] Szemerédi E., “On sets of integers containing no k elements in arithmetic progression”, Acta Arith., 27 (1975), 199–245 | MR | Zbl

[31] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl

[32] Ullrich D. C., “Khinchin's inequality and the zeroes of Bloch functions”, Duke Math. J., 57:2 (1988), 519–535 | DOI | MR | Zbl

[33] Wolff Th. H., “Counterexamples with harmonic gradients in $R^3$”, Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., 42, Princeton Univ. Press, Princeton, NJ, 1995, 321–384 | MR | Zbl

[34] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965 | MR