Dirichlet problem in an angular domain with rapidly oscillating boundary: Modeling of the problem and asymptotics of the solution
Algebra i analiz, Tome 19 (2007) no. 2, pp. 183-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

Leading asymptotic terms are constructed and justified for the solution of the Dirichlet problem corresponding to the Poisson equation in an angular domain with rapidly oscillating boundary. In addition to an exponential boundary layer near the entire boundary, a power-law boundary layer arises, which is localized in the vicinity of the corner point. Modeling of the problem in a singularly perturbed domain is studied; this amounts to finding a boundary-value problem in a simpler domain whose solution approximates that of the initial problem with advanced precision, namely, yields a two-term asymptotic expression. The way of modeling depends on the opening $\alpha$ of the angle at the corner point; the cases where $\alpha\pi$, $\alpha\in(\pi,2\pi)$, and $\alpha=2\pi$ are treated differently, and some of them require the techniques of selfadjoint extensions of differential operators.
Keywords: Dirichlet problem, oscillating boundary, corner point, asymptotics, selfadjoint extension.
@article{AA_2007_19_2_a9,
     author = {S. A. Nazarov},
     title = {Dirichlet problem in an angular domain with rapidly oscillating boundary: {Modeling} of the problem and asymptotics of the solution},
     journal = {Algebra i analiz},
     pages = {183--225},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_2_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Dirichlet problem in an angular domain with rapidly oscillating boundary: Modeling of the problem and asymptotics of the solution
JO  - Algebra i analiz
PY  - 2007
SP  - 183
EP  - 225
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_2_a9/
LA  - ru
ID  - AA_2007_19_2_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Dirichlet problem in an angular domain with rapidly oscillating boundary: Modeling of the problem and asymptotics of the solution
%J Algebra i analiz
%D 2007
%P 183-225
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_2_a9/
%G ru
%F AA_2007_19_2_a9
S. A. Nazarov. Dirichlet problem in an angular domain with rapidly oscillating boundary: Modeling of the problem and asymptotics of the solution. Algebra i analiz, Tome 19 (2007) no. 2, pp. 183-225. http://geodesic.mathdoc.fr/item/AA_2007_19_2_a9/

[1] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[2] Sánchez-Palencia E., Suquet P., “Friction and homogenization of a boundary”, Free Boundary Problems: Theory and Applications, I, II (Montecatini, 1981), Res. Notes in Math., 78, eds. A. Fasano, M. Primicerio, Pitman, Boston, MA, London, 1983, 561–571 | MR

[3] Nazarov S. A., “Dvuchlennaya asimptotika reshenii spektralnykh zadach s singulyarnymi vozmuscheniyami”, Matem. sb., 181:3 (1990), 291–320 | MR

[4] Achdou Y., Pironneau O., “Domain decomposition and wall-laws”, C. R. Acad. Sci. Paris Ser. I Math., 320:5 (1995), 541–547 | MR | Zbl

[5] Mohammadi B., Pironneau O., Valentin F., “Rough boundaries and wall laws”, Internat. J. Numer. Methods Fluids, 27 Special Issue:1–4 (1998), 169–177 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] Jäger W., Micelič A., “On the roughness-induced effective boundary conditions for an incompressible viscous flow”, J. Differential Equations, 170:1 (2001), 96–122 | DOI | MR | Zbl

[7] Lobo M., Pérez M., “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331 (2003), 303–317 | DOI

[8] Amirat Y., Chechkin G. A., Gadylbshin R. R., “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary”, Zh. vychisl. mat. i mat. fiz., 46:1 (2006), 102–115 | MR | Zbl

[9] Zorin I. S., Nazarov S. A., “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikl. mat. i mekh., 53:4 (1989), 642–650 | MR | Zbl

[10] Zorin I. S., Nazarov S. A., “Dvuchlennaya asimptotika resheniya zadachi o prodolnoi deformatsii plastiny, zaschemlennoi po krayu”, Vychisl. mekh. deform. tverd. tela, 1992, no. 2, 10–21

[11] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle v uglovoi oblasti s periodicheski izmenyayuscheisya granitsei”, Matem. zametki, 49:5 (1991), 86–96 | MR | Zbl

[12] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 | MR | Zbl

[13] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, Tbil. un-t, Tbilisi, 1981 | MR

[14] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. I. Zadacha v konuse”, Sib. matem. zhurn., 22:4 (1981), 142–163 | MR | Zbl

[15] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. II. Zadacha v ogranichennoi oblasti”, Sib. matem. zhurn., 22:5 (1981), 132–152 | MR | Zbl

[16] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[17] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[18] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[19] Berezin F. A., Faddeev L. D., “Zamechanie ob uravnenii Shrëdingera s singulyarnym potentsialom”, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[20] Pavlov B. S., “Teoriya rasshirenii i yavno reshaemye modeli”, UMN, 42:6(258) (1987), 99–131 | MR

[21] Nazarov S. A., “Asimptoticheskie usloviya v tochke, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh razlozhenii”, Tr. S.-Peterburg. mat. o-va, 5, 1998, 112–183 | Zbl

[22] Nazarov S. A., “Ob effekte trekhmernosti vblizi vershiny treschiny v tonkoi plastine”, Prikl. mat. i mekh., 55:3 (1991), 500–510 | MR | Zbl

[23] Nazarov S. A.,, “Three-dimensional effects at plate crack tips”, C. R. Acad. Sci. Paris Ser. 2, 314 (1992), 995–1000 | Zbl

[24] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 209–292

[25] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[26] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5(329) (1999), 77–142 | MR | Zbl

[27] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[28] Nazarov S. A., Romashev Yu. A., “Izmenenie koeffitsienta intensivnosti pri razrushenii peremychki mezhdu kollinearnymi treschinami”, Izv. AN Arm SSR. Mekh., 35:4 (1982), 30–40 | Zbl

[29] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[30] Nazarov S. A., “Samosopryazhennye rasshireniya operatora zadachi Dirikhle v vesovykh funktsionalnykh prostranstvakh”, Matem. sb., 137(179):2(10) (1988), 224–241 | MR

[31] Birman M. Sh., Skvortsov G. E., “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izv. vuzov. matem., 1962, no. 5, 12–21 | MR | Zbl

[32] Sokolowski J., Zolésio J.-P., “Introduction to shape optimization”, Shape sensitivity analysis, Springer Ser. Comput. Math., 16, Springer-Verlag, Berlin, 1992 | MR | Zbl

[33] Delfour M. C., Zolésio J.-P., “Shapes and geometries”, Analysis, differential calculus, and optimization, Adv. in Design and Control., 4, SIAM, Philadelphia, PA, 2001 | MR | Zbl

[34] Nazarov S. A., Sokolowski J., “Asymptotic analysis of shape functionals”, J. Math. Pures Appl. (9), 82:2 (2003), 125–196 | MR | Zbl

[35] Nazarov S. A., Sokolowski J., “Self-adjoint extensions for the Neumann Laplacian and applications”, Acta Math. Sin. (Engl. Ser.), 22:3 (2006), 879–906 | DOI | MR | Zbl