Classification of the group actions on the real line and circle
Algebra i analiz, Tome 19 (2007) no. 2, pp. 156-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The group actions on the real line and circle are classified. It is proved that each minimal continuous action of a group on the circle is either a conjugate of an isometric action, or a finite cover of a proximal action. It is also shown that each minimal continuous action of a group on the real line either is conjugate to an isometric action, or is a proximal action, or is a cover of a proximal action on the circle. As a corollary, it is proved that a continuous action of a group on the circle either has a finite orbit, or is semiconjugate to a minimal action on the circle that is either isometric or proximal. As a consequence, a new proof of the Ghys-Margulis alternative is obtained.
Keywords: Circle, line, group of homeomorphisms, action, proximal, distal, semiconjugacy.
@article{AA_2007_19_2_a8,
     author = {A. V. Malyutin},
     title = {Classification of the group actions on the real line and circle},
     journal = {Algebra i analiz},
     pages = {156--182},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_2_a8/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - Classification of the group actions on the real line and circle
JO  - Algebra i analiz
PY  - 2007
SP  - 156
EP  - 182
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_2_a8/
LA  - ru
ID  - AA_2007_19_2_a8
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T Classification of the group actions on the real line and circle
%J Algebra i analiz
%D 2007
%P 156-182
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_2_a8/
%G ru
%F AA_2007_19_2_a8
A. V. Malyutin. Classification of the group actions on the real line and circle. Algebra i analiz, Tome 19 (2007) no. 2, pp. 156-182. http://geodesic.mathdoc.fr/item/AA_2007_19_2_a8/

[1] Beklaryan L. A., “Gruppy gomeomorfizmov pryamoi i okruzhnosti. Topologicheskie kharakteristiki i metricheskie invarianty”, UMN, 59:4(358) (2004), 3–68 | MR | Zbl

[2] Ghys É., “Groups acting on the circle”, Enseign. Math. (2), 47 (2001), 329–407 | MR | Zbl

[3] Furstenberg H., “Boundary theory and stochastic processes on homogeneous spaces”, Harmonic Analysis on Homogeneous Spaces (Williams Goll., Williamstown, MA, 1972), Proc. Sympos. Pure Math., 26, AMS, Providence, RI, 1973, 193–229 | MR

[4] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[5] Lyndon R. C., Schupp P. E., Combinatorial group theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin-New York, 1977 ; R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR | Zbl | MR

[6] Margulis G. A., “Free subgroups of the homeomorphism group of the circle”, C. R. Acad. Sci. Paris Sér I Math., 331:9 (2000), 669–674 | MR | Zbl