Derivatives of regular measures
Algebra i analiz, Tome 19 (2007) no. 2, pp. 86-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu$ be a positive singular measure on Euclidean space. If $\mu$ is sufficiently regular, then for any $a\in[0,+\infty]$ the set where the derivative of $\mu$ is equal to $a$ is large in the sense of the Hausdorff dimension.
Keywords: Regular singular measure, Hausdorff dimension, derivative.
@article{AA_2007_19_2_a4,
     author = {E. Doubtsov},
     title = {Derivatives of regular measures},
     journal = {Algebra i analiz},
     pages = {86--104},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_2_a4/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Derivatives of regular measures
JO  - Algebra i analiz
PY  - 2007
SP  - 86
EP  - 104
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_2_a4/
LA  - ru
ID  - AA_2007_19_2_a4
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Derivatives of regular measures
%J Algebra i analiz
%D 2007
%P 86-104
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_2_a4/
%G ru
%F AA_2007_19_2_a4
E. Doubtsov. Derivatives of regular measures. Algebra i analiz, Tome 19 (2007) no. 2, pp. 86-104. http://geodesic.mathdoc.fr/item/AA_2007_19_2_a4/

[1] Aleksandrov A. B., Anderson J. M., Nicolau A., “Inner functions, Bloch spaces and symmetric measures”, Proc. London Math. Soc. (3), 79:2 (1999), 318–352 | DOI | MR | Zbl

[2] Bishop C. J., “Bounded functions in the little Bloch space”, Pacific J. Math., 142:2 (1990), 209–225 | MR | Zbl

[3] Carmona J. J., Donaire J. J., “The converse of Fatou's theorem for Zygmund measures”, Pacific J. Math., 191:2 (1999), 207–222 | MR | Zbl

[4] Donaire J. J., “Radial behaviour of inner functions in $B_0$”, J. London Math. Soc. (2), 63:1 (2001), 141–158 | DOI | MR | Zbl

[5] Doubtsov E., Nicolau A., “Symmetric and Zygmund measures in several variables”, Ann. Inst. Fourier (Grenoble), 52:1 (2002), 153–177 | MR | Zbl

[6] Dubtsov E. S., “Obratnaya teorema Fatu dlya gladkikh mer”, Zap. nauch. semin. POMI, 315, 2004, 90–95 | MR | Zbl

[7] Hungerford G. J., Boundaries of smooth sets and singular sets of Blaschke products in the little Bloch class, Thesis, California Inst. of Technology, Pasadena, 1988

[8] Loomis L. H., “The converse of the Fatou theorem for positive harmonic functions”, Trans. Amer. Math. Soc., 53 (1943), 239–250 | DOI | MR | Zbl

[9] Makarov N. G., “Veroyatnostnye metody v teorii konformnykh otobrazhenii”, Algebra i analiz, 1:1 (1989), 3–59 | Zbl

[10] Nicolau A., “Radial behaviour of harmonic Bloch functions and their area function”, Indiana Univ. Math. J., 48:4 (1999), 1213–1236 | DOI | MR | Zbl

[11] O'Neill M. D., “Random walk and boundary behavior of functions in the disk”, Houston J. Math., 25:2 (1999), 379–386 | MR

[12] Rohde S., “On functions in the little Bloch space and inner functions”, Trans. Amer. Math. Soc., 348:7 (1996), 2519–2531 | DOI | MR | Zbl

[13] Rudin W., “Tauberian theorems for positive harmonic functions”, Nederl. Akad. Wetensch. Indag. Math., 40:3 (1978), 376–384 | MR