Restricting the Rost invariant to the center
Algebra i analiz, Tome 19 (2007) no. 2, pp. 52-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

For simple simply connected algebraic groups of classical type, Merkurjev, Parimala, and Tignol gave a formula for the restriction of the Rost invariant to the torsors induced from the center of the group. This paper completes their results by giving formulas for the exceptional groups. The method is somewhat different and also recovers their formula for classical groups.
Keywords: Algebraic groups of classical type, exceptional groups, Rost invariant.
@article{AA_2007_19_2_a2,
     author = {S. Garibaldi and A. Qu\'eguiner-Mathiev},
     title = {Restricting the {Rost} invariant to the center},
     journal = {Algebra i analiz},
     pages = {52--73},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_2_a2/}
}
TY  - JOUR
AU  - S. Garibaldi
AU  - A. Quéguiner-Mathiev
TI  - Restricting the Rost invariant to the center
JO  - Algebra i analiz
PY  - 2007
SP  - 52
EP  - 73
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_2_a2/
LA  - en
ID  - AA_2007_19_2_a2
ER  - 
%0 Journal Article
%A S. Garibaldi
%A A. Quéguiner-Mathiev
%T Restricting the Rost invariant to the center
%J Algebra i analiz
%D 2007
%P 52-73
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_2_a2/
%G en
%F AA_2007_19_2_a2
S. Garibaldi; A. Quéguiner-Mathiev. Restricting the Rost invariant to the center. Algebra i analiz, Tome 19 (2007) no. 2, pp. 52-73. http://geodesic.mathdoc.fr/item/AA_2007_19_2_a2/

[1] Borel A., Linear algebraic groups, 2nd ed., Grad. Texts in Math., 126, Springer-Verlag, New York, 1991 | MR | Zbl

[2] Bourbaki N., Lie groups and Lie algebras, Chapters 4–6, Springer-Verlag, Berlin, 2002 | MR | Zbl

[3] Borel A., Springer T. A., “Rationality properties of linear algebraic groups, II”, Tôhoku Math. J. (2), 20 (1968), 443–497 ; Borel, Oeuvres: collected papers, Vol. II, 1959–1968, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl | MR | Zbl

[4] Borel A., Tits J., “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 55–150 | DOI | MR

[5] Brown K. S., Cohomology of Groups, Grad. Texts in Math., 87, Springer-Verlag, New York-Berlin, 1982 | MR

[6] Garibaldi R. S., “Groups of type $E_7$ over arbitrary fields”, Comm. Algebra, 29:6 (2001), 2689–2710 | DOI | MR | Zbl

[7] Garibaldi R. S., “The Rost invariant has trivial kernel for quasi-split groups of low rank”, Comment. Math. Helv., 76:4 (2001), 684–711 | DOI | MR | Zbl

[8] Gille Ph., “Invariants cohomologiques de Rost en caractéristique positive”, $K$-Theory, 21 (2000), 57–100 | DOI | MR | Zbl

[9] Knus M.-A., Merkurjev A. S., Rost M., Tignol J.-P., The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, AMS, Providence, RI, 1998 | MR | Zbl

[10] Merkurev A. S., “Normennyi printsip dlya algebraicheskikh grupp”, Algebra i analiz, 7:2 (1995), 77–105 | MR

[11] Merkurjev A. S., “Rost invariants of simply connected algebraic groups.”, With a section by S. Garibaldi, Cohomological Invariants in Galois Cohomology, Univ. Lecture Ser., 28, Amer. Math. Soc., Providence, RI, 2003, 101–158 | MR

[12] Merkurjev A. S., Parimala R., Tignol J.-P., “Invariants of quasi-trivial tori and the Rost invariant”, Algebra i analiz, 14:5 (2002), 110–151 | MR | Zbl

[13] Merkurjev A. S., Tignol J.-P., “The multipliers of similitudes and the Brauer group of homogeneous varieties”, J. Reine Angew. Math., 461 (1995), 13–47 | MR | Zbl

[14] Springer T. A., Steinberg R., “Conjugacy classes”, Seminar on Algebraic Groups and Related Finite Groups (Inst. Adv. Study, Princeton, NJ, 1968–1969), Lecture Notes in Math., 131, Springer, Berlin, 1970, 167–266 | MR

[15] Steinberg R., Lectures on Chevalley groups, Yale Univ., New Haven, Conn., 1968 | MR

[16] Tits J., “Classification of algebraic semisimple groups”, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., 9, AMS, Providence, RI, 1966, 33–62 | MR

[17] Tits J., “Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque”, J. Reine Angew. Math., 247 (1971), 196–220 | MR | Zbl