The space of isometry covariant tensor valuations
Algebra i analiz, Tome 19 (2007) no. 1, pp. 194-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the basic tensor valuations which, by a result of S. Alesker, span the vector space of tensor-valued, continuous, isometry covariant valuations on convex bodies, are not linearly independent. P. McMullen has discovered linear dependences between these basic valuations and has implicitly raised the question as to whether these are essentially the only ones. The present paper provides a positive answer to this question. The dimension of the vector space of continuous, isometry covariant tensor valuations, of a fixed rank and of a given degree of homogeneity, is explicitly determined. The approach is constructive and permits one to provide a specific basis.
Keywords: Convex body, tensor valuation, isometry covariance.
@article{AA_2007_19_1_a8,
     author = {D. Hug and R. Schneider and R. Schuster},
     title = {The space of isometry covariant tensor valuations},
     journal = {Algebra i analiz},
     pages = {194--224},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_1_a8/}
}
TY  - JOUR
AU  - D. Hug
AU  - R. Schneider
AU  - R. Schuster
TI  - The space of isometry covariant tensor valuations
JO  - Algebra i analiz
PY  - 2007
SP  - 194
EP  - 224
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_1_a8/
LA  - en
ID  - AA_2007_19_1_a8
ER  - 
%0 Journal Article
%A D. Hug
%A R. Schneider
%A R. Schuster
%T The space of isometry covariant tensor valuations
%J Algebra i analiz
%D 2007
%P 194-224
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_1_a8/
%G en
%F AA_2007_19_1_a8
D. Hug; R. Schneider; R. Schuster. The space of isometry covariant tensor valuations. Algebra i analiz, Tome 19 (2007) no. 1, pp. 194-224. http://geodesic.mathdoc.fr/item/AA_2007_19_1_a8/

[1] Alesker S., “Continuous valuations on convex sets”, Geom. Funct. Anal., 8 (1998), 402–409 | DOI | MR | Zbl

[2] Alesker S., “Continuous rotation invariant valuations on convex sets”, Ann. of Math. (2), 149 (1999), 977–1005 | DOI | MR | Zbl

[3] Alesker S., “Description of continuous isometry covariant valuations on convex sets”, Geom. Dedicata, 74 (1999), 241–248 | DOI | MR | Zbl

[4] Alesker S., “On P. McMullen's conjecture on translation invariant valuations”, Adv. Math., 155 (2000), 239–263 | DOI | MR | Zbl

[5] Alesker S., “Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture”, Geom. Funct. Anal., 11 (2001), 244–272 | DOI | MR | Zbl

[6] Alesker S., “Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations”, J. Differential Geom., 63 (2003), 63–95 | MR | Zbl

[7] Alesker S., “$SU(2)$-invariant valuations”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1850, Springer, Berlin, 2004, 21–29 | MR | Zbl

[8] Beisbart C., Barbosa M. S., Wagner H., da F. Costa L., Extended morphometric analysis of neuronal cells with Minkowski valuations, arXiv: /cond-mat/0507648

[9] Beisbart C., Dahlke R., Mecke K., Wagner H., “Vector- and tensor-valued descriptors for spatial patterns”, Morphology of Condensed Matter, Lecture Notes in Phys., 600, Springer, Berlin, 2002, 238–260

[10] Hadwiger H., Schneider R., “Vektorielle Integralgeometrie”, Elem. Math., 26 (1971), 49–57 | MR | Zbl

[11] Klain D. A., “A short proof of Hadwiger's characterization theorem”, Mathematika, 42 (1995), 329–339 | MR | Zbl

[12] McMullen P., “Continuous translation invariant valuations on the space of compact convex sets”, Arch. Math. (Basel), 34 (1980), 377–384 | MR | Zbl

[13] McMullen P., “Valuations and dissections”, Handbook of Convex Geometry, Vol A, B, Elsevier, Amsterdam, 1993, 933–988 | MR

[14] McMullen P., “Isometry covariant valuations on convex bodies”, Rend. Circ. Mat. Palermo (2), 50 Suppl. (1997), 259–271 | MR | Zbl

[15] McMullen P., Schneider R., “Valuations on convex bodies”, Convexity and its Applications, Birkhäuser, Basel, 1983, 170–247 | MR

[16] Petkovšek M., Wilf H., Zeilberger D., $A=B$, A. K. Peters, Ltd., Wellesley, MA, 1996 | MR | Zbl

[17] Pukhlikov A. V., Khovanskii A. G., “Konechno-additivnye mery virtualnykh mnogogrannikov”, Algebra i analiz, 4:2 (1992), 161–185 | MR

[18] Schneider R., “On Steiner points of convex bodies”, Israel J. Math., 9 (1971), 241–249 | DOI | MR | Zbl

[19] Schneider R., “Krümmungsschwerpunkte konvexer Körper, I, II”, Abh. Math. Sem. Univ. Hamburg, 37 (1972), 112–132 ; 204–217 | DOI | MR | Zbl | MR | Zbl

[20] Schneider R., Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[21] Schneider R., “Tensor valuations on convex bodies and integral geometry, I”, Rend. Circ. Mat. Palermo (2), 65 Suppl. (2000), 295–316 | MR | Zbl

[22] Schneider R., Schuster R., “Tensor valuations on convex bodies and integral geometry. II”, Rend. Circ. Mat. Palermo (2), 70 Suppl. (2002), 295–314 | MR | Zbl