Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2007_19_1_a8, author = {D. Hug and R. Schneider and R. Schuster}, title = {The space of isometry covariant tensor valuations}, journal = {Algebra i analiz}, pages = {194--224}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2007_19_1_a8/} }
D. Hug; R. Schneider; R. Schuster. The space of isometry covariant tensor valuations. Algebra i analiz, Tome 19 (2007) no. 1, pp. 194-224. http://geodesic.mathdoc.fr/item/AA_2007_19_1_a8/
[1] Alesker S., “Continuous valuations on convex sets”, Geom. Funct. Anal., 8 (1998), 402–409 | DOI | MR | Zbl
[2] Alesker S., “Continuous rotation invariant valuations on convex sets”, Ann. of Math. (2), 149 (1999), 977–1005 | DOI | MR | Zbl
[3] Alesker S., “Description of continuous isometry covariant valuations on convex sets”, Geom. Dedicata, 74 (1999), 241–248 | DOI | MR | Zbl
[4] Alesker S., “On P. McMullen's conjecture on translation invariant valuations”, Adv. Math., 155 (2000), 239–263 | DOI | MR | Zbl
[5] Alesker S., “Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture”, Geom. Funct. Anal., 11 (2001), 244–272 | DOI | MR | Zbl
[6] Alesker S., “Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations”, J. Differential Geom., 63 (2003), 63–95 | MR | Zbl
[7] Alesker S., “$SU(2)$-invariant valuations”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1850, Springer, Berlin, 2004, 21–29 | MR | Zbl
[8] Beisbart C., Barbosa M. S., Wagner H., da F. Costa L., Extended morphometric analysis of neuronal cells with Minkowski valuations, arXiv: /cond-mat/0507648
[9] Beisbart C., Dahlke R., Mecke K., Wagner H., “Vector- and tensor-valued descriptors for spatial patterns”, Morphology of Condensed Matter, Lecture Notes in Phys., 600, Springer, Berlin, 2002, 238–260
[10] Hadwiger H., Schneider R., “Vektorielle Integralgeometrie”, Elem. Math., 26 (1971), 49–57 | MR | Zbl
[11] Klain D. A., “A short proof of Hadwiger's characterization theorem”, Mathematika, 42 (1995), 329–339 | MR | Zbl
[12] McMullen P., “Continuous translation invariant valuations on the space of compact convex sets”, Arch. Math. (Basel), 34 (1980), 377–384 | MR | Zbl
[13] McMullen P., “Valuations and dissections”, Handbook of Convex Geometry, Vol A, B, Elsevier, Amsterdam, 1993, 933–988 | MR
[14] McMullen P., “Isometry covariant valuations on convex bodies”, Rend. Circ. Mat. Palermo (2), 50 Suppl. (1997), 259–271 | MR | Zbl
[15] McMullen P., Schneider R., “Valuations on convex bodies”, Convexity and its Applications, Birkhäuser, Basel, 1983, 170–247 | MR
[16] Petkovšek M., Wilf H., Zeilberger D., $A=B$, A. K. Peters, Ltd., Wellesley, MA, 1996 | MR | Zbl
[17] Pukhlikov A. V., Khovanskii A. G., “Konechno-additivnye mery virtualnykh mnogogrannikov”, Algebra i analiz, 4:2 (1992), 161–185 | MR
[18] Schneider R., “On Steiner points of convex bodies”, Israel J. Math., 9 (1971), 241–249 | DOI | MR | Zbl
[19] Schneider R., “Krümmungsschwerpunkte konvexer Körper, I, II”, Abh. Math. Sem. Univ. Hamburg, 37 (1972), 112–132 ; 204–217 | DOI | MR | Zbl | MR | Zbl
[20] Schneider R., Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[21] Schneider R., “Tensor valuations on convex bodies and integral geometry, I”, Rend. Circ. Mat. Palermo (2), 65 Suppl. (2000), 295–316 | MR | Zbl
[22] Schneider R., Schuster R., “Tensor valuations on convex bodies and integral geometry. II”, Rend. Circ. Mat. Palermo (2), 70 Suppl. (2002), 295–314 | MR | Zbl