On Tabachnikov's conjecture
Algebra i analiz, Tome 19 (2007) no. 1, pp. 177-193
Cet article a éte moissonné depuis la source Math-Net.Ru
Tabachnikov's conjecture is proved: for any closed curve $\Gamma$ lying inside aЁconvex closed curve $\Gamma_1$ the mean absolute curvature $T(\Gamma)$ exceeds $T(\Gamma_1)$ if $\Gamma\ne k\Gamma_1$.
Keywords:
Geometric inequalities, mean absolute curvature, convexity.
@article{AA_2007_19_1_a7,
author = {A. I. Nazarov and F. V. Petrov},
title = {On {Tabachnikov's} conjecture},
journal = {Algebra i analiz},
pages = {177--193},
year = {2007},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2007_19_1_a7/}
}
A. I. Nazarov; F. V. Petrov. On Tabachnikov's conjecture. Algebra i analiz, Tome 19 (2007) no. 1, pp. 177-193. http://geodesic.mathdoc.fr/item/AA_2007_19_1_a7/
[1] Tabachnikov S., “The tale of a geometric inequality”, MASS Selecta, AMS, Providence, RI, 2003, 254–262 | MR
[2] Lagarias J., Richardson T., “Convexity and the average curvature of the plane curves”, Geom. Dedicata, 67 (1997), 1–38 | DOI | MR
[3] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhizdat, M.-L., 1948
[4] http://mathworld.wolfram.com/SphericalTrigonometry.html
[5] http://mathworld.wolfram.com/Triangle.html
[6] http://mathworld.wolfram.com/SphericalExcess.html
[7] Zalgaller V. A., “O krivykh s ogranichennoi variatsiei povorota na vypukloi poverkhnosti”, Matem. sb., 26(68):2 (1950), 205–214 | MR | Zbl