Uniform almost sub-Gaussian estimates for linear functionals on convex sets
Algebra i analiz, Tome 19 (2007) no. 1, pp. 93-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

A well-known consequence of the Brunn–Minkowski inequality says that the distribution of a linear functional on a convex set has a uniformly subexponential tail. That is, for any dimension $n$, any convex set $K\subset \mathbb{R}^n$ of volume one, and any linear functional $\varphi:\mathbb{R}^n\rightarrow \mathbb{R}$, we have $$ \operatorname{Vol}_n(\lbrace x\in K;\vert\varphi(x)\vert>t\Vert\varphi\Vert _{L_1(K)}\rbrace) \le e^{-ct}\enskip \text{for all }t>1, $$ where $\Vert \varphi\Vert _{L_1(K)}=\int_K\vert\varphi(x)\vert d x$ and $c>0$ is a universal constant. In this paper, it is proved that for any dimension $n$ and a convex set $K\subset\mathbb{R}^n$ of volume one, there exists a nonzero linear functional $\varphi:\mathbb{R}^n\rightarrow\mathbb{R}$ such that $\displaystyle\operatorname{Vol}_n(\lbrace x\in K;\vert\varphi(x)\vert>t\Vert\varphi\Vert _{L_1(K)}\rbrace) \le e^{-c\frac{t^2}{\log^5 (t+1)}}\enskip$ for all $\displaystyle\enskip t>1,$ where $c>0$ is a universal constant.
Keywords: Hyperbolic dimension, Gromov's asymptotic dimension.
@article{AA_2007_19_1_a4,
     author = {S.. Buyalo and V. Shroeder},
     title = {Uniform almost {sub-Gaussian} estimates for linear functionals on convex sets},
     journal = {Algebra i analiz},
     pages = {93--108},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_1_a4/}
}
TY  - JOUR
AU  - S.. Buyalo
AU  - V. Shroeder
TI  - Uniform almost sub-Gaussian estimates for linear functionals on convex sets
JO  - Algebra i analiz
PY  - 2007
SP  - 93
EP  - 108
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_1_a4/
LA  - ru
ID  - AA_2007_19_1_a4
ER  - 
%0 Journal Article
%A S.. Buyalo
%A V. Shroeder
%T Uniform almost sub-Gaussian estimates for linear functionals on convex sets
%J Algebra i analiz
%D 2007
%P 93-108
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_1_a4/
%G ru
%F AA_2007_19_1_a4
S.. Buyalo; V. Shroeder. Uniform almost sub-Gaussian estimates for linear functionals on convex sets. Algebra i analiz, Tome 19 (2007) no. 1, pp. 93-108. http://geodesic.mathdoc.fr/item/AA_2007_19_1_a4/

[1] Alexandroff P., “Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen”, Math. Ann., 106 (1932), 161–238 | DOI | MR | Zbl

[2] Bell G., Dranishnikov A., “On asymptotic dimension of groups acting on trees”, Algebr. Geom. Topol., 1 (2001), 57–71, (electronic) | DOI | MR | Zbl

[3] Bestvina M., Mess G., “The boundary of negatively curved groups”, J. Amer. Math. Soc., 4:3 (1991), 469–481 | DOI | MR | Zbl

[4] Bonk M., Schramm O., “Embeddings of Gromov hyperbolic spaces”, Geom. Funct. Anal., 10:2 (2000), 266–306 | DOI | MR | Zbl

[5] Buyalo S., Dranishnikov A., Schroeder V., “Embedding of hyperbolic groups into products of binary trees”, Invent. Math., 169:1 (2007), 153–192 | DOI | MR | Zbl

[6] Buyalo S., Schroeder V., “Hyperbolic rank and subexponential corank of metric spaces”, Geom. Funct. Anal., 12 (2002), 293–306 | DOI | MR | Zbl

[7] Buyalo S., Schroeder V., “Embedding of hyperbolic spaces in the product of trees”, Geom. Dedicata, 113 (2005), 75–93 | DOI | MR | Zbl

[8] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. Math., EMS, Zürich, 2007 | MR | Zbl

[9] Dranishnikov A., Januszkiewicz T., “Every Coxeter group acts amenably on a compact space”, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), Topology Proc., 24, 1999, 135–141 | MR | Zbl

[10] Gromov M., “Asymptotic invariants of infinite groups”, Geometric Group Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., 182, eds. G. A. Niblo, M. A. Roller, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR

[11] Hurewicz W., Wallman H., Dimension theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, NJ, 1941 | MR | Zbl

[12] Januszkiewicz T., Swiatkowski J., “Hyperbolic Coxeter groups of large dimension”, Comment. Math. Helv., 78 (2003), 555–583 | DOI | MR | Zbl