Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2007_19_1_a4, author = {S.. Buyalo and V. Shroeder}, title = {Uniform almost {sub-Gaussian} estimates for linear functionals on convex sets}, journal = {Algebra i analiz}, pages = {93--108}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2007_19_1_a4/} }
S.. Buyalo; V. Shroeder. Uniform almost sub-Gaussian estimates for linear functionals on convex sets. Algebra i analiz, Tome 19 (2007) no. 1, pp. 93-108. http://geodesic.mathdoc.fr/item/AA_2007_19_1_a4/
[1] Alexandroff P., “Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen”, Math. Ann., 106 (1932), 161–238 | DOI | MR | Zbl
[2] Bell G., Dranishnikov A., “On asymptotic dimension of groups acting on trees”, Algebr. Geom. Topol., 1 (2001), 57–71, (electronic) | DOI | MR | Zbl
[3] Bestvina M., Mess G., “The boundary of negatively curved groups”, J. Amer. Math. Soc., 4:3 (1991), 469–481 | DOI | MR | Zbl
[4] Bonk M., Schramm O., “Embeddings of Gromov hyperbolic spaces”, Geom. Funct. Anal., 10:2 (2000), 266–306 | DOI | MR | Zbl
[5] Buyalo S., Dranishnikov A., Schroeder V., “Embedding of hyperbolic groups into products of binary trees”, Invent. Math., 169:1 (2007), 153–192 | DOI | MR | Zbl
[6] Buyalo S., Schroeder V., “Hyperbolic rank and subexponential corank of metric spaces”, Geom. Funct. Anal., 12 (2002), 293–306 | DOI | MR | Zbl
[7] Buyalo S., Schroeder V., “Embedding of hyperbolic spaces in the product of trees”, Geom. Dedicata, 113 (2005), 75–93 | DOI | MR | Zbl
[8] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. Math., EMS, Zürich, 2007 | MR | Zbl
[9] Dranishnikov A., Januszkiewicz T., “Every Coxeter group acts amenably on a compact space”, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), Topology Proc., 24, 1999, 135–141 | MR | Zbl
[10] Gromov M., “Asymptotic invariants of infinite groups”, Geometric Group Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., 182, eds. G. A. Niblo, M. A. Roller, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR
[11] Hurewicz W., Wallman H., Dimension theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, NJ, 1941 | MR | Zbl
[12] Januszkiewicz T., Swiatkowski J., “Hyperbolic Coxeter groups of large dimension”, Comment. Math. Helv., 78 (2003), 555–583 | DOI | MR | Zbl