Dimensions of locally and asymptotically self-similar spaces
Algebra i analiz, Tome 19 (2007) no. 1, pp. 60-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two results are obtained, in a sense dual to each other. First, the capacity dimension of every compact, locally self-similar metric space coincides with the topological dimension, and second, a metric space asymptotically similar to its compact subspace has asymptotic dimension equal to the topological dimension of the subspace. As an application of the first result, the following Gromov conjecture is proved: the asymptotic dimension of every hyperbolic group $G$ equals the topological dimension of its boundary at infinity plus 1, $\operatorname{asdim}G=\dim\partial_{\infty}G+1$. As an application of the second result, we construct Pontryagin surfaces for the asymptotic dimension; in particular, these surfaces are examples of metric spaces $X$, $Y$ with $\operatorname{asdim}(X\times Y)\operatorname{asdim}X+\operatorname{asdim}Y$. Other applications are also given.
Keywords: Asymptotic dimension, self-similar spaces.
@article{AA_2007_19_1_a3,
     author = {S. V. Buyalo and N. D. Lebedeva},
     title = {Dimensions of locally and asymptotically self-similar spaces},
     journal = {Algebra i analiz},
     pages = {60--92},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_1_a3/}
}
TY  - JOUR
AU  - S. V. Buyalo
AU  - N. D. Lebedeva
TI  - Dimensions of locally and asymptotically self-similar spaces
JO  - Algebra i analiz
PY  - 2007
SP  - 60
EP  - 92
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_1_a3/
LA  - ru
ID  - AA_2007_19_1_a3
ER  - 
%0 Journal Article
%A S. V. Buyalo
%A N. D. Lebedeva
%T Dimensions of locally and asymptotically self-similar spaces
%J Algebra i analiz
%D 2007
%P 60-92
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_1_a3/
%G ru
%F AA_2007_19_1_a3
S. V. Buyalo; N. D. Lebedeva. Dimensions of locally and asymptotically self-similar spaces. Algebra i analiz, Tome 19 (2007) no. 1, pp. 60-92. http://geodesic.mathdoc.fr/item/AA_2007_19_1_a3/

[1] Alexandroff P., “Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen”, Math. Ann., 106 (1932), 161–238 | DOI | MR | Zbl

[2] Assouad P., “Plongements lipschitziens dans $R^n$”, Bull. Soc. Math. France, 111 (1983), 429–448 | MR | Zbl

[3] Bell G., Dranishnikov A., “On asymptotic dimension of groups”, Algebr. Geom. Topol., 1 (2001), 57–71 | DOI | MR | Zbl

[4] Bonk M., Schramm O., “Embeddings of Gromov hyperbolic spaces”, Geom. Funct. Anal., 10:2 (2000), 266–306 | DOI | MR | Zbl

[5] Bourdon M., “Immeubles hyperboliques, dimension conforme et rigidité de Mostow”, Geom. Funct. Anal., 7 (1997), 245–268 | DOI | MR | Zbl

[6] Brady N., Farb B., “Filling-invariants at infinity for manifolds of nonpositive curvature”, Trans. Amer. Math. Soc., 350 (1998), 3393–3405 | DOI | MR | Zbl

[7] Buyalo S. V., “Asimptoticheskaya razmernost giperbolicheskogo prostranstva i emkostnaya razmernost ego granitsy na beskonechnosti”, Algebra i analiz, 17:2 (2005), 70–95 ; arXiv: /math/0505427 | MR

[8] Buyalo S. V., “Emkostnaya razmernost i vlozhenie giperbolicheskikh prostranstv v proizvedenie derevev”, Algebra i analiz, 17:4 (2005), 42–58 ; arXiv: /math/0505429 | MR

[9] Buyalo S., “Volume entropy of hyperbolic graph surfaces”, Ergodic Theory Dynam. Systems, 25 (2005), 403–417 | DOI | MR | Zbl

[10] Buyalo S., Schroeder V., “Embedding of hyperbolic spaces in the product of trees”, Geom. Dedicata, 113 (2005), 75–93 ; arXiv: /math/0311524 | DOI | MR | Zbl

[11] Buyalo S., Shreder V., “Giperbolicheskaya razmernost metricheskikh prostranstv”, Algebra i analiz, 19:1 (2007), 93–108 | MR

[12] Dranishnikov A., “On the virtual cohomological dimensions of Coxeter groups”, Proc. Amer. Math. Soc., 125 (1997), 1885–1891 | DOI | MR | Zbl

[13] Dranishnikov A., “Boundaries of Coxeter groups and simplicial complexes with given links”, J. Pure Appl. Algebra, 137 (1999), 139–151 | DOI | MR | Zbl

[14] Dranishnikov A., “Cohomological dimension theory of compact metric spaces”, Topology Atlas Invited Contributions, 6:1 (2001), 7–73

[15] Dranishnikov A., Schroeder V., Embedding of hyperbolic Coxeter groups into products of binary trees and aperiodic tilings, , 2005 arXiv: /math/0504566

[16] Dranishnikov A., Zarichnyi M., “Universal spaces for asymptotic dimension”, Topology Appl., 140 (2004), 203–225 | DOI | MR | Zbl

[17] Edgar G. A., Golds J., “A fractal dimension estimate for a graph-directed iterated function system of non-similarities”, Indiana Univ. Math. J., 48 (1999), 429–447 | DOI | MR | Zbl

[18] Falconer K., Techniques in fractal geometry, John Wiley and Sons, Chichester, 1997 | MR | Zbl

[19] Grave B., Asymptotic dimension of coarse spaces, Preprint, 2004

[20] Gromov M., “Asymptotic invariants of infinite groups”, Geometric Group Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., 182, eds. G. A. Niblo, M. A. Roller, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR

[21] Hutchinson J., “Fractals and self-similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl

[22] Lang U., Schlichenmaier T., Nagata dimension, quasisymmetric embeddings and Lipschitz extensions, , 2004 arXiv: /math/0410048 | MR

[23] Roe J., Lectures on coarse geometry, Univ. Lecture Ser., 31, AMS, Providence, RI, 2003 | MR | Zbl

[24] Swiatkowski J., “On the asymptotic homological dimension of hyperbolic groups”, Bull. London Math. Soc., 27 (1995), 209–221 | DOI | MR | Zbl