Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2007_19_1_a1, author = {S. Artstein-Avidan and V. D. Milman}, title = {Using rademacher permutations to reduce randomness}, journal = {Algebra i analiz}, pages = {23--45}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2007_19_1_a1/} }
S. Artstein-Avidan; V. D. Milman. Using rademacher permutations to reduce randomness. Algebra i analiz, Tome 19 (2007) no. 1, pp. 23-45. http://geodesic.mathdoc.fr/item/AA_2007_19_1_a1/
[1] Alon N., Spencer J. H., The probabilistic method, Wiley-Intersci. Ser. in Discrete Math. Optim., Wiley-Intersci., New York, 2000 | MR
[2] Artstein-Avidan S., “A Bernstein-Chernoff deviation inequality, and geometric properties of random families of operators”, Israel J. Math., 156 (2006), 187–204 | DOI | MR | Zbl
[3] Artstein-Avidan S., Milman V., “Logarithmic reduction of the level of randomness in some probabilistic geometric constructions”, J. Funct. Anal., 235 (2006), 297–329 | DOI | MR | Zbl
[4] Artstein-Avidan S., Friedland O., Milman V., “Geometric applications of Chernoff-type estimates and a zigzag approximation for balls”, Proc. Amer. Math. Soc., 134 (2006), 1735–1742 | DOI | MR | Zbl
[5] Artstein-Avidan S., Friedland O., Milman V., “Geometric applications of Chernoff-type estimates”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1910, Springer, Berlin, 2007, 45–75 | MR | Zbl
[6] Barron A., Cheang G., “A better approximation for balls”, J. Approx. Theory, 104:2 (2000), 183–203 | DOI | MR | Zbl
[7] Ben-Tal A., Nemirovski A., “On polyhedral approximations of the second-order cone”, Math. Oper. Res., 26:2 (2001), 193–205 | DOI | MR | Zbl
[8] Bourgain J., Lindenstrauss J., Milman V., “Minkowski sums and symmetrizations”, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., 1317, Springer, Berlin, 1988, 44–66 | MR
[9] Giannopoulos A., Milman V., “Euclidean structure in finite dimensional normed spaces”, Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001,, 707–779 | MR
[10] Gromov M., Milman V., “A topological application of the isoperimetric inequality”, Amer. J. Math., 105:4 (1983), 843–854 | DOI | MR | Zbl
[11] Milman V., “The concentration phenomenon and linear structure of finite-dimensional normed spaces”, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, CA, 1986), AMS, Providence, RI, 1987, 961–975 | MR
[12] Milman V., Pajor A., “Regularization of star bodies by random hyperplane cut off”, Studia Math., 159:2 (2003), 247–261 | DOI | MR | Zbl
[13] Milman V., Schechtman G., Asymptotic theory of finite-dimensional normed spaces, With an appendix by M. Gromov, Lecture Notes in Math., 1200, Springer-Verlag, Berlin, 1986 | MR | Zbl
[14] Milman V. D., Schechtman G., “Global versus local asymptotic theories of finitedimensional normed spaces”, Duke Math. J., 90:1 (1997), 73–93 | DOI | MR | Zbl
[15] Pisier G., “The volume of convex bodies and Banach space geometry”, Cambridge Tracts in Math., 94 (1989), Cambridge Univ. Press, Cambridge | MR