Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_6_a4, author = {O. B. Podkopaev and E. K. Shinder}, title = {On the {Riemann--Roch} theorem without denominators}, journal = {Algebra i analiz}, pages = {219--227}, publisher = {mathdoc}, volume = {18}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_6_a4/} }
O. B. Podkopaev; E. K. Shinder. On the Riemann--Roch theorem without denominators. Algebra i analiz, Tome 18 (2006) no. 6, pp. 219-227. http://geodesic.mathdoc.fr/item/AA_2006_18_6_a4/
[1] W. Fulton, Intersection Theory, Springer-Verlag, New York, 1984 | MR | Zbl
[2] A. Grothendieck, “La theorie de classes de Chern”, Bull Soc. Math. France, 86 (1958), 137–154 | MR | Zbl
[3] R. Hartshorne, Algebraic geometry, Grad. texts in Math., 52, Springer-Verlag, New York, 1977 | MR | Zbl
[4] J. W. Milnor, J. D. Stasheff, Characteristic Classes, Ann. of Math. Stud., 76, Princeton Univ. Press, 1974 | MR | Zbl
[5] I. Panin, Push-forwards in Oriented Cohomology Theories of Algebraic Varieties, II, http://www.math.uiuc.edu/K-theory/0619/2003
[6] I. Panin, A. Smirnov, Push-forwards in Oriented Cohomology Theories of Algebraic Varieties, http://www.math.uiuc.edu/K-theory/0459/2000
[7] I. Panin, “Riemann–Roch Theorems for Oriented Cohomology”, Axiomatic, Enriched, and Motivic Homotopy Theory, ed. J. P. C. Greenless, Kluwer Academic Publishers, Netherlands, 2004, 261–333 | MR | Zbl
[8] D. Quillen, “Higher Algebraic $K$-theory”, Algebraic K-Theory. I. Higher K-Theories, Lecture Notes in Math., 147, 1973, 85–147 | MR | Zbl
[9] J.-L. Verdier, “Specialisation des classes de Chern”, Astérisque, 82–83, Soc. Math. France, Paris, 1981, 149–159 | MR