On the Riemann--Roch theorem without denominators
Algebra i analiz, Tome 18 (2006) no. 6, pp. 219-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof of the Riemann–Roch theorem without denominators is given. It is also proved that Grothendieck's ring functor $CH_{\mathrm{mult}}$ is not an oriented cohomology pretheory.
@article{AA_2006_18_6_a4,
     author = {O. B. Podkopaev and E. K. Shinder},
     title = {On the {Riemann--Roch} theorem without denominators},
     journal = {Algebra i analiz},
     pages = {219--227},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_6_a4/}
}
TY  - JOUR
AU  - O. B. Podkopaev
AU  - E. K. Shinder
TI  - On the Riemann--Roch theorem without denominators
JO  - Algebra i analiz
PY  - 2006
SP  - 219
EP  - 227
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_6_a4/
LA  - ru
ID  - AA_2006_18_6_a4
ER  - 
%0 Journal Article
%A O. B. Podkopaev
%A E. K. Shinder
%T On the Riemann--Roch theorem without denominators
%J Algebra i analiz
%D 2006
%P 219-227
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_6_a4/
%G ru
%F AA_2006_18_6_a4
O. B. Podkopaev; E. K. Shinder. On the Riemann--Roch theorem without denominators. Algebra i analiz, Tome 18 (2006) no. 6, pp. 219-227. http://geodesic.mathdoc.fr/item/AA_2006_18_6_a4/

[1] W. Fulton, Intersection Theory, Springer-Verlag, New York, 1984 | MR | Zbl

[2] A. Grothendieck, “La theorie de classes de Chern”, Bull Soc. Math. France, 86 (1958), 137–154 | MR | Zbl

[3] R. Hartshorne, Algebraic geometry, Grad. texts in Math., 52, Springer-Verlag, New York, 1977 | MR | Zbl

[4] J. W. Milnor, J. D. Stasheff, Characteristic Classes, Ann. of Math. Stud., 76, Princeton Univ. Press, 1974 | MR | Zbl

[5] I. Panin, Push-forwards in Oriented Cohomology Theories of Algebraic Varieties, II, http://www.math.uiuc.edu/K-theory/0619/2003

[6] I. Panin, A. Smirnov, Push-forwards in Oriented Cohomology Theories of Algebraic Varieties, http://www.math.uiuc.edu/K-theory/0459/2000

[7] I. Panin, “Riemann–Roch Theorems for Oriented Cohomology”, Axiomatic, Enriched, and Motivic Homotopy Theory, ed. J. P. C. Greenless, Kluwer Academic Publishers, Netherlands, 2004, 261–333 | MR | Zbl

[8] D. Quillen, “Higher Algebraic $K$-theory”, Algebraic K-Theory. I. Higher K-Theories, Lecture Notes in Math., 147, 1973, 85–147 | MR | Zbl

[9] J.-L. Verdier, “Specialisation des classes de Chern”, Astérisque, 82–83, Soc. Math. France, Paris, 1981, 149–159 | MR