On the number of closed braids obtained as a~result of single stabilizations and destabilizations of a~closed braid
Algebra i analiz, Tome 18 (2006) no. 6, pp. 205-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for a closed $n$-braid $\widehat\beta$ to have infinite sets $\mathfrak D(\widehat\beta)$ and $\mathfrak S(\widehat\beta)$ are given, where $\mathfrak D(\widehat\beta)$ denotes the set of all closed $(n-1)$-braids that are obtained from $\widehat\beta$ via Markov destabilization, while $\mathfrak S(\widehat\beta)$ denotes the set of all closed $(n+1)$-braids that are obtained from $\widehat\beta$ via Markov stabilization. New integer-valued conjugacy invariants for the braid group are introduced.
@article{AA_2006_18_6_a3,
     author = {A. V. Malyutin},
     title = {On the number of closed braids obtained as a~result of single stabilizations and destabilizations of a~closed braid},
     journal = {Algebra i analiz},
     pages = {205--218},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_6_a3/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - On the number of closed braids obtained as a~result of single stabilizations and destabilizations of a~closed braid
JO  - Algebra i analiz
PY  - 2006
SP  - 205
EP  - 218
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_6_a3/
LA  - ru
ID  - AA_2006_18_6_a3
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T On the number of closed braids obtained as a~result of single stabilizations and destabilizations of a~closed braid
%J Algebra i analiz
%D 2006
%P 205-218
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_6_a3/
%G ru
%F AA_2006_18_6_a3
A. V. Malyutin. On the number of closed braids obtained as a~result of single stabilizations and destabilizations of a~closed braid. Algebra i analiz, Tome 18 (2006) no. 6, pp. 205-218. http://geodesic.mathdoc.fr/item/AA_2006_18_6_a3/

[1] J. W. Alexander, “A lemma on system of knotted curves”, Proc. Nat. Acad. Sci. U.S.A., 9 (1923), 93–95 | DOI | Zbl

[2] E. Artin, “Theorie der Zöpfe”, Abh. Math. Sem. Univ. Hamburg, 4 (1925), 47–72 | DOI | Zbl

[3] J. S. Birman, Braids, links, and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, NJ, 1974 | MR

[4] A. A. Markov, “Über die freie Äquivalenz der geschlossenen Zöpfe”, Matem. cb., 1(43):1 (1936), 73–78 | Zbl