Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_6_a3, author = {A. V. Malyutin}, title = {On the number of closed braids obtained as a~result of single stabilizations and destabilizations of a~closed braid}, journal = {Algebra i analiz}, pages = {205--218}, publisher = {mathdoc}, volume = {18}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_6_a3/} }
TY - JOUR AU - A. V. Malyutin TI - On the number of closed braids obtained as a~result of single stabilizations and destabilizations of a~closed braid JO - Algebra i analiz PY - 2006 SP - 205 EP - 218 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2006_18_6_a3/ LA - ru ID - AA_2006_18_6_a3 ER -
A. V. Malyutin. On the number of closed braids obtained as a~result of single stabilizations and destabilizations of a~closed braid. Algebra i analiz, Tome 18 (2006) no. 6, pp. 205-218. http://geodesic.mathdoc.fr/item/AA_2006_18_6_a3/
[1] J. W. Alexander, “A lemma on system of knotted curves”, Proc. Nat. Acad. Sci. U.S.A., 9 (1923), 93–95 | DOI | Zbl
[2] E. Artin, “Theorie der Zöpfe”, Abh. Math. Sem. Univ. Hamburg, 4 (1925), 47–72 | DOI | Zbl
[3] J. S. Birman, Braids, links, and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, NJ, 1974 | MR
[4] A. A. Markov, “Über die freie Äquivalenz der geschlossenen Zöpfe”, Matem. cb., 1(43):1 (1936), 73–78 | Zbl