Systems of diagram categories and $K$-theory.~I
Algebra i analiz, Tome 18 (2006) no. 6, pp. 131-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

With any left system of diagram categories or any left pointed dérivateur, a $K$-theory space is associated. This $K$-theory space is shown to be canonically an infinite loop space and to have a lot of common properties with Waldhausen's $K$-theory. A weaker version of additivity is shown. Also, Quillen's $K$-theory of a large class of exact categories including the Abelian categories is proved to be a retract of the $K$-theory of the associated dérivateur.
@article{AA_2006_18_6_a1,
     author = {G. Garkusha},
     title = {Systems of diagram categories and $K${-theory.~I}},
     journal = {Algebra i analiz},
     pages = {131--186},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_6_a1/}
}
TY  - JOUR
AU  - G. Garkusha
TI  - Systems of diagram categories and $K$-theory.~I
JO  - Algebra i analiz
PY  - 2006
SP  - 131
EP  - 186
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_6_a1/
LA  - ru
ID  - AA_2006_18_6_a1
ER  - 
%0 Journal Article
%A G. Garkusha
%T Systems of diagram categories and $K$-theory.~I
%J Algebra i analiz
%D 2006
%P 131-186
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_6_a1/
%G ru
%F AA_2006_18_6_a1
G. Garkusha. Systems of diagram categories and $K$-theory.~I. Algebra i analiz, Tome 18 (2006) no. 6, pp. 131-186. http://geodesic.mathdoc.fr/item/AA_2006_18_6_a1/

[1] Grothendieck A., Pursuing stacks, manuscript, 1983

[2] Grothendieck A., Les Dérivateurs, manuscript, 1983–1990, http://www.math.jussieu.fr/~maltsin

[3] Heller A., Homotopy theories, Mem. Amer. Math. Soc., 71, no. 383, 1988 | MR | Zbl

[4] Keller B., “Derived categories and universal problems”, Comm. Algebra, 19:3 (1991), 699–747 | DOI | MR | Zbl

[5] Franke J., Uniqueness theorems for certain triangulated categories with an Adams spectral sequence, K-theory Preprint Archives No 139, 1996

[6] Maltsiniotis G., “Structure triangulée sur les catégories des coefficients d'un dérivateur triangulé”, Exposés au groupe de travail “Algèbre et topologie homotopiques”, Paris, 2001

[7] Maltsiniotis G., La K-théorie d'un dérivateur triangulé, Preprint, 2002; http://www.math.jussieu.fr/~maltsin

[8] Segal G., “Categories and cohomology theories”, Topology, 13 (1974), 293–312 | DOI | MR | Zbl

[9] Waldhausen F., “Algebraic K-theory of spaces”, Algebraic and geometric topology, Proc. Conf. (New Brunswick/USA, 1983), Lecture Notes in Mathematics, 1126, Springer-Verlag, 1985, 318–419 | MR

[10] Garkusha G., “Systems of diagram categories and K-theory, II”, Math. Z., 249:3 (2005), 641–682 | DOI | MR | Zbl

[11] Cisinski D.-C., Neeman A., Additivity for derivator K-theory, Preprint, 2005 ; http://www.math.univ-paris13.fr/~cisinski | MR

[12] Maklein S., Kategorii dlya rabotayuschego matematika, Fizmatlit, 2004

[13] Hovey M., Model categories, Math. Surv. Monogr., 63, Amer. Math. Soc., 1999 | MR | Zbl

[14] Cisinski D.-C., “Images directes cohomologiques dans les catégories de modèles”, Ann. Math. Blaise Pascal, 10:2 (2003), 195–244 | MR | Zbl

[15] Brown K. S., “Abstract homotopy theory and generalized sheaf cohomology”, Trans. Amer. Math. Soc., 186 (1973), 419–458 | DOI | MR

[16] Cisinski D.-C., Catégories dérivables, Preprint, 2002; http://www.math.univ-paris13.fr/~cisinski

[17] Bousfield A. K., Friedlander E. M., “Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets”, Geom. Appl. Homotopy Theory, II, Proc. Conf. (Evanston/USA 1977), Lecture Notes in Math., 658, Springer-Verlag, 1978, 80–130 | MR

[18] Keller B., Le dérivateur triangulé associé à une catégorie exacte, Preprint, 2002

[19] Thomason R. W., Trobaugh T., “Higher algebraic K-theory of schemes and of derived categories”, The Grothendieck Festschrift, III, Collect. Artic. in Honor of the 60th Birthday of A. Grothendieck, Progress in Math., 88, Birkhäuser, 1990, 247–435 | MR | Zbl

[20] Cisinski D.-C., An e-interchange, 2004

[21] Waldhausen F., “Algebraic K-theory of generalized free products”, Ann. Math., 108 (1978), 135–256 | DOI | MR

[22] Neeman A., “K-theory for triangulated categories $3{1\over 2}$ A, B”, K-theory, 20 (2000), 97–174 ; 243–298 | DOI | MR | Zbl | MR | Zbl

[23] Neeman A., “The K-theory of triangulated categories”, Handbook of K-theory, Springer-Verlag, Berlin, 2005, 1011–1080 | MR

[24] Toën B., Homotopical and higher categorical structures in algebraic geometry Habilitation thesis, arXiv: math.AG/0312262

[25] Toën B., Vezzosi G., “Remark on K-theory and S-categories”, Topology, 43:4 (2004), 765–791 | DOI | MR

[26] Toën B., Comparing S-categories and “dérivateurs de Grothendieck”, Preprint, 2003; http://math.unice.fr/

[27] Schlichting M., “A note on K-theory and triangulated categories”, Inv. Math., 150 (2002), 111–116 | DOI | MR | Zbl

[28] Quillen D., “Higher algebraic K-theory, I”, Algebraic $K$-theory I, Lecture Notes in Math., 341, Springer-Verlag, 1973, 85–147 | MR

[29] “Determinants in triangulated categories”, K-theory, 24 (2001), 57–68 | DOI | MR