Riemann--Roch theorem for operations in cohomology of algebraic varieties
Algebra i analiz, Tome 18 (2006) no. 5, pp. 210-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Riemann–Roch theorem for multiplicative operations in oriented cohomology theories for algebraic varieties is proved and an explicit formula for the corresponding Todd classes is given. The formula obtained can also be applied in the topological situation, and the theorem can be regarded as a change-of-variables formula for the integration of cohomology classes.
@article{AA_2006_18_5_a8,
     author = {A. L. Smirnov},
     title = {Riemann--Roch theorem for operations in cohomology of algebraic varieties},
     journal = {Algebra i analiz},
     pages = {210--236},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_5_a8/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Riemann--Roch theorem for operations in cohomology of algebraic varieties
JO  - Algebra i analiz
PY  - 2006
SP  - 210
EP  - 236
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_5_a8/
LA  - ru
ID  - AA_2006_18_5_a8
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Riemann--Roch theorem for operations in cohomology of algebraic varieties
%J Algebra i analiz
%D 2006
%P 210-236
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_5_a8/
%G ru
%F AA_2006_18_5_a8
A. L. Smirnov. Riemann--Roch theorem for operations in cohomology of algebraic varieties. Algebra i analiz, Tome 18 (2006) no. 5, pp. 210-236. http://geodesic.mathdoc.fr/item/AA_2006_18_5_a8/

[1] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973

[2] Borel A., Serre J.-P., “Le théor`eme de Riemann–Roch”, Bull. Soc. Math. France, 86 (1958), 97–136 | MR | Zbl

[3] Atiyah M. F., Hirzebruch F., “Riemann–Roch theorems for differentiable manifolds”, Bull. Amer. Math. Soc., 65 (1959), 276–281 | DOI | MR | Zbl

[4] Dyer E., “Relations between cohomology theories”, Colloquium on Algebraic Topology (August 1–10, 1962), Various Publ. Series, 1, Mat. Inst. Aarhus Univ., Aarhus, 1962, 89–93

[5] Suslin A., Voevodsky V., “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl

[6] Morel F., Voevodsky V., Homotopy category of schemes over a base, Preprint, 1997

[7] Voevodsky V., “$\mathbf{A}^1$-homotopy theory”, Doc. Math., Extra V. 1 (1998), 579–604 | MR | Zbl

[8] Panin I., Smirnov A., Push-forwards in oriented cohomology theories of algebraic varieties, K-Theory Preprint Archives No 459, 2000

[9] Panin I., “Oriented cohomology theories of algebraic varieties”, K-Theory, 30 (2003), 265–314 | MR | Zbl

[10] Smirnov A. L., “Orientatsii i transfery v kogomologiyakh algebraicheskikh mnogoobrazii”, Algebra i analiz, 18:2 (2006), 167–224

[11] Panin I., “Riemann–Roch theorems for oriented cohomology”, Axiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II Math. Phys. Chem., 131, Kluwer Acad. Publ., Dordrecht, 2004, 261–333 | MR | Zbl

[12] Miller H., “Universal Bernoulli numbers and the $S^1$-transfer”, Current Trends in Algebraic Topology, Part 2 (London Ont., 1981), CMS Conf. Proc., 2, Amer. Math. Soc., Providence, RI, 1982, 437–449 | MR

[13] Hovey M., Model categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[14] Voevodsky V., “Reduced power operations in motivic cohomology”, Publ. Math. Inst. Hautes Études Sci., 98 (2003), 1–57 | MR | Zbl

[15] Gillet H., “Riemann–Roch theorems for higher algebraic K-theory”, Adv. in Math., 40 (1981), 203–289 | DOI | MR | Zbl

[16] Soulé Ch., “Opérations en K-théorie algébrique”, Canad. J. Math., 37 (1985), 488–550 | MR | Zbl

[17] Bukhshtaber V. M., “Novye metody v teorii kobordizmov”, Dopolnenie: R. Stong, Zametki o teorii kobordizmov, Mir, M., 1973, 336–365

[18] Atiyah M. F., Hirzebruch F., “Cohomologie-Operationen und charakteristische Klassen”, Math. Z., 77 (1961), 149–187 | DOI | MR | Zbl

[19] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[20] Smirnov A. L., “Gomotopicheskie svoistva algebraicheskikh vektornykh rassloenii”, Zap. nauchn. sem. POMI, 319, 2004, 261–263 | Zbl

[21] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[22] Svittser R. M., Algebraicheskaya topologiya – gomotopii i gomologii, Nauka, M., 1985 | MR

[23] Rudyak Yu. B., On Thom spectra, orientability, and cobordism, Springer-Verlag, Berlin, 1998 | MR | Zbl