Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_5_a8, author = {A. L. Smirnov}, title = {Riemann--Roch theorem for operations in cohomology of algebraic varieties}, journal = {Algebra i analiz}, pages = {210--236}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_5_a8/} }
A. L. Smirnov. Riemann--Roch theorem for operations in cohomology of algebraic varieties. Algebra i analiz, Tome 18 (2006) no. 5, pp. 210-236. http://geodesic.mathdoc.fr/item/AA_2006_18_5_a8/
[1] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973
[2] Borel A., Serre J.-P., “Le théor`eme de Riemann–Roch”, Bull. Soc. Math. France, 86 (1958), 97–136 | MR | Zbl
[3] Atiyah M. F., Hirzebruch F., “Riemann–Roch theorems for differentiable manifolds”, Bull. Amer. Math. Soc., 65 (1959), 276–281 | DOI | MR | Zbl
[4] Dyer E., “Relations between cohomology theories”, Colloquium on Algebraic Topology (August 1–10, 1962), Various Publ. Series, 1, Mat. Inst. Aarhus Univ., Aarhus, 1962, 89–93
[5] Suslin A., Voevodsky V., “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl
[6] Morel F., Voevodsky V., Homotopy category of schemes over a base, Preprint, 1997
[7] Voevodsky V., “$\mathbf{A}^1$-homotopy theory”, Doc. Math., Extra V. 1 (1998), 579–604 | MR | Zbl
[8] Panin I., Smirnov A., Push-forwards in oriented cohomology theories of algebraic varieties, K-Theory Preprint Archives No 459, 2000
[9] Panin I., “Oriented cohomology theories of algebraic varieties”, K-Theory, 30 (2003), 265–314 | MR | Zbl
[10] Smirnov A. L., “Orientatsii i transfery v kogomologiyakh algebraicheskikh mnogoobrazii”, Algebra i analiz, 18:2 (2006), 167–224
[11] Panin I., “Riemann–Roch theorems for oriented cohomology”, Axiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II Math. Phys. Chem., 131, Kluwer Acad. Publ., Dordrecht, 2004, 261–333 | MR | Zbl
[12] Miller H., “Universal Bernoulli numbers and the $S^1$-transfer”, Current Trends in Algebraic Topology, Part 2 (London Ont., 1981), CMS Conf. Proc., 2, Amer. Math. Soc., Providence, RI, 1982, 437–449 | MR
[13] Hovey M., Model categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[14] Voevodsky V., “Reduced power operations in motivic cohomology”, Publ. Math. Inst. Hautes Études Sci., 98 (2003), 1–57 | MR | Zbl
[15] Gillet H., “Riemann–Roch theorems for higher algebraic K-theory”, Adv. in Math., 40 (1981), 203–289 | DOI | MR | Zbl
[16] Soulé Ch., “Opérations en K-théorie algébrique”, Canad. J. Math., 37 (1985), 488–550 | MR | Zbl
[17] Bukhshtaber V. M., “Novye metody v teorii kobordizmov”, Dopolnenie: R. Stong, Zametki o teorii kobordizmov, Mir, M., 1973, 336–365
[18] Atiyah M. F., Hirzebruch F., “Cohomologie-Operationen und charakteristische Klassen”, Math. Z., 77 (1961), 149–187 | DOI | MR | Zbl
[19] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR
[20] Smirnov A. L., “Gomotopicheskie svoistva algebraicheskikh vektornykh rassloenii”, Zap. nauchn. sem. POMI, 319, 2004, 261–263 | Zbl
[21] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl
[22] Svittser R. M., Algebraicheskaya topologiya – gomotopii i gomologii, Nauka, M., 1985 | MR
[23] Rudyak Yu. B., On Thom spectra, orientability, and cobordism, Springer-Verlag, Berlin, 1998 | MR | Zbl