Novikov homology, twisted Alexander polynomials, and Thurston cones
Algebra i analiz, Tome 18 (2006) no. 5, pp. 173-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a connected CW complex, and let $G$ denote the fundamental group of $M$. Let $\pi$ be an epimorphism of $G$ onto a free finitely generated Abelian group $H$, let $\xi\colon H\to\mathbf R$ be a homomorphism, and let $\rho$ be an antihomomorphism of $G$ to the group $\operatorname{GL}(V)$ of automorphisms of a free finitely generated $R$-module $V$ (where $R$ is a commutative factorial ring). To these data, we associate the twisted Novikov homology of $M$, which is a module over the Novikov completion of the ring $\Lambda=R[H]$. The twisted Novikov homology provides the lower bounds for the number of zeros of any Morse form whose cohomology class equals $\xi\circ\pi$. This generalizes a result by H. Goda and the author. In the case when $M$ is a compact connected 3-manifold with zero Euler characteristic, we obtain a criterion for the vanishing of the twisted Novikov homology of $M$ in terms of the corresponding twisted Alexander polynomial of the group $G$. We discuss the relationship of the twisted Novikov homology with the Thurston norm on the 1-cohomology of $M$. The electronic preprint of this work (2004) is available from the ArXiv.
@article{AA_2006_18_5_a7,
     author = {A. V. Pajitnov},
     title = {Novikov homology, twisted {Alexander} polynomials, and {Thurston} cones},
     journal = {Algebra i analiz},
     pages = {173--209},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_5_a7/}
}
TY  - JOUR
AU  - A. V. Pajitnov
TI  - Novikov homology, twisted Alexander polynomials, and Thurston cones
JO  - Algebra i analiz
PY  - 2006
SP  - 173
EP  - 209
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_5_a7/
LA  - en
ID  - AA_2006_18_5_a7
ER  - 
%0 Journal Article
%A A. V. Pajitnov
%T Novikov homology, twisted Alexander polynomials, and Thurston cones
%J Algebra i analiz
%D 2006
%P 173-209
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_5_a7/
%G en
%F AA_2006_18_5_a7
A. V. Pajitnov. Novikov homology, twisted Alexander polynomials, and Thurston cones. Algebra i analiz, Tome 18 (2006) no. 5, pp. 173-209. http://geodesic.mathdoc.fr/item/AA_2006_18_5_a7/

[1] Burde G., Zieschang H., Knots, de Gruyter Stud. Math., 5, Walter de Gruyter, Berlin, 1985 | MR | Zbl

[2] Cockcroft W. H., Swan R. G., “On the homotopy type of certain two-dimensional complexes”, Proc. London Math. Soc. (3), 11 (1961), 194–202 | MR

[3] Cohen M. M., A course in simple-homotopy theory, Grad. Texts in Math., 10, Springer-Verlag, New York-Berlin, 1973 | MR | Zbl

[4] Crowell R. H., Fox R. H., Introduction to knot theory, Ginn and Co., Boston, MA, 1963 | MR | Zbl

[5] Eisenbud D., Commutative algebras. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | MR | Zbl

[6] Farber M. Sh., “Tochnost neravenstv Novikova”, Funkts. analiz i ego pril., 19:1 (1985), 49–59 | MR | Zbl

[7] Goda H., “Heegaard splitting for sutured manifolds and Murasugi sum”, Osaka J. Math., 29 (1992), 21–40 | MR | Zbl

[8] Goda H., “On handle number of Seifert surfaces in $S^3$”, Osaka J. Math., 30 (1993), 63–80 | MR | Zbl

[9] Goda H., Kitano T., Morifuji T., Reidemeister torsion, twisted Alexander polynomial and fibered knots, ; Comment. Math. Helv., 80:1 (2005), 51–61 arXiv: math.GT/0311155 | MR | Zbl

[10] Goda H., Morifuji T., “Twisted Alexander polynomial for $SL(2,C)$-representations and fibered knots”, C. R. Math. Acad. Sci. Soc. R. Can., 25:4 (2003), 97–101 | MR | Zbl

[11] Goda H., Pajitnov A., Twisted Novikov homology and circle-valued Morse theory for knots and links, ; Osaka J. Math., 42:3 (2005), 557–572 arXiv: math/0312374 | MR | Zbl

[12] Jiang B., Wang S., “Twisted topological invariants associated with representations”, Topics in Knot Theory (Erzurum, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 399, Kluwer Acad. Publ., Dordrecht, 1993, 211–227 | MR | Zbl

[13] Kitano T., “Twisted Alexander polynomial and Reidemeister torsion”, Pacific J. Math., 174 (1996), 431–442 | MR | Zbl

[14] Latour F., “Existence de 1-formes fermèes non singuli`eres dans une classe de cohomologie de de Rham”, Inst. Hautes Études Sci. Publ. Math., 80, 1995, 135–194 | MR | Zbl

[15] Lin X. S., Representations of knot groups and twisted Alexander polynomials, Preprint, 1990 ; Acta Math. Sin., 17 (2001), 361–380 | MR | DOI | Zbl

[16] Massey W., Homology and cohomology theory, Monogr. Textbooks Pure Appl. Math., 46, Marcel Dekker, New York-Basel, 1978 | MR | Zbl

[17] McDonald B. R., Linear algebra over commutative rings, Monogr. Textbooks Pure Appl. Math., 87, Marcel Dekker, New York, 1984 | MR | Zbl

[18] McMullen C. T., “The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology”, Ann. Sci. École Norm. Sup. (4), 35:2 (2002), 153–171 ; http://abel.math.harvard.edu/ctm/papers | MR | Zbl

[19] Novikov S. P., “Mnogoznachnye funktsii i funktsionaly. Analog teorii Morsa”, Dokl. AN SSSR, 260:1 (1981), 31–35 | MR | Zbl

[20] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5(227) (1982), 3–49 | MR | Zbl

[21] Pazhitnov A. V., “O tochnosti neravenstv tipa Novikova dlya mnogoobrazii so svobodnoi abelevoi funktsionalnoi gruppoi”, Matem. sb., 180:11 (1989), 1486–1523 | Zbl

[22] Pazhitnov A. V., “O modulyakh nad nekotorymi lokalizatsiyami koltsa loranovskikh polinomov”, Matem. zametki, 46:5 (1989), 40–49 | MR | Zbl

[23] Pazhitnov A. V., On the Novikov complex for rational Morse forms, Preprint, No 12, Inst. for Mat. og datalogi, Odense Univ., Oct. 1991 ; Ann. Fac. Sci. Toulouse Math. (6), 4 (1995), 297–338 ; www.math.sciences.univ-nantes.fr/pajitnov/ | MR | Zbl

[24] Pazhitnov A. V., Surgery on the Novikov complex, Rapport de Recherche CNRS URA 758, Nantes, 1993; ; K-Theory, 10 (1996), 323–412 http://www.math.sciences.univ-nantes.fr/pajitnov/ | DOI | MR | Zbl

[25] Pazhitnov A. V., On the asymptotics of Morse numbers of finite covers of manifolds, ; Topology, 38:3 (1999), 529–541 arXiv: math.DG/9810136 | MR | DOI

[26] Pazhitnov A. V., Ranicki A., The Whitehead group of the Novikov ring, ; K-Theory, 21:4 (2000), 325–365 arXiv: math.AT/0012031 | MR | DOI

[27] Veber K., Pazhitnov A. i dr., “Chislo Morsa–Novikova dlya uzlov i zatseplenii”, Algebra i analiz, 13:3 (2001), 105–118 | MR

[28] Ranicki A., “The algebraic theory of torsion. I. Foundations”, Algebraic and Geometric Topology (New Brunswich, NJ, 1983), Lecture Notes in Math., 1126, Springer, Berlin, 1985, 199–237 | MR

[29] Rolfsen D., Knots and links, Math. Lecture Ser., 7, Publish or Perish, Inc., Berkeley, CA, 1976 | MR | Zbl

[30] Schütz D., One-parameter fixed-point theory and gradient flows of closed 1-forms, ; K-Theory, 25 (2002), 59–97 arXiv: math.DG/0104245 | MR | DOI | Zbl

[31] Schütz D., Gradient flows of closed 1-forms and their closed orbits, ; Forum Math., 14 (2002), 509–537 arXiv: math.DG/0009055 | MR | DOI | Zbl

[32] Sikorav J.-Cl., Points fixes de difféomorphismes symplectiques, intersections de sousvariétés lagrangiennes, et singularités de un-formes fermées, Thése de Doctorat d'Etat Es Sciences Math., Univ. Paris-Sud, Centre d'Orsay, 1987

[33] Le Ty Kuok Tkhang, “Mnogoobraziya predstavlenii i ikh podmnogoobraziya podskokov kogomologii dlya grupp uzlov”, Matem. sb., 184:2 (1993), 57–82 | Zbl

[34] Thurston W., “A norm for the homology of 3-manifolds”, Mem. Amer. Math. Soc., 59, no. 339, 1986, 99–130 | MR

[35] Turaev V. G., “Mnogochlen Aleksandera trekhmernogo mnogoobraziya”, Matem. sb., 97:3 (1975), 341–359 | MR | Zbl

[36] Turaev V., “A norm for the cohomology of 2-complexes”, Algebr. Geom. Topol., 2 (2002), 137–155 | DOI | MR | Zbl

[37] Wada M., “Twisted Alexander polynomial for finitely presentable groups”, Topology, 33 (1994), 241–256 | DOI | MR | Zbl

[38] Waldhausen F., “Algebraic K-theory of generalized free products, I, II”, Ann. of Math. (2), 108 (1978), 135–204 | DOI | MR | Zbl

[39] Witten E., “Supersymmetry and Morse theory”, J. Differential Geom., 17:4 (1983), 661–692 | MR