Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_5_a6, author = {A. Mudrov}, title = {On quantization of the {Semenov--Tian--Shansky} {Poisson} bracket on simple algebraic groups}, journal = {Algebra i analiz}, pages = {156--172}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_5_a6/} }
A. Mudrov. On quantization of the Semenov--Tian--Shansky Poisson bracket on simple algebraic groups. Algebra i analiz, Tome 18 (2006) no. 5, pp. 156-172. http://geodesic.mathdoc.fr/item/AA_2006_18_5_a6/
[1] P. Baumann, “Another proof of Joseph and Letzter's separation of variables theorem for quantum groups”, Transform. Groups, 5 (2000), 3–20 | DOI | MR
[2] A. A. Belavin, V. G. Drinfeld, Triangle equations and simple Lie algebras, Classic Rev. Math. and Math. Phys., 1, Harwood Academic Publishers, Amsterdam, 1998 | MR | Zbl
[3] P. N. Pyatov, P. A. Saponov, “Characteristic relations for quantum matrices”, J. Phys. A, 28 (1995), 4415–4421 | DOI | MR | Zbl
[4] V. Drinfel'd, “Quantum groups”, Proc. Int. Congress of Mathematicians (Berkeley, 1986), ed. A. V. Gleason, AMS, Providence, 1987, 798–820 | MR
[5] V. Drinfeld, “Almost cocommutative Hopf algebras”, Leningrad Math. J., 1:2 (1990), 321–342 | MR
[6] V. Drinfeld, “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR
[7] J. Donin, A. Mudrov, “Reflection Equation, Twist and Equivariant Quantization”, Isr. J. Math., 136 (2003), 11–28 | DOI | MR | Zbl
[8] P. Etingof, D. Kazhdan, “Quantization of Lie bialgebras”, Selecta Math., 2:1 (1996), 1–41 | DOI | MR | Zbl
[9] G. Fiore, “Quantum groups $SO_q(N)$, $Sp_q(n)$ have $q$-determinants, too”, J. Phys. A, 27 (1994), 3795–3802 | DOI | MR | Zbl
[10] L. Faddeev, N. Reshetikhin, L. Takhtajan, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR
[11] P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York, 1978 | MR | Zbl
[12] A. Isaev, Quantum groups and Yang–Baxter equation, Preprint MPIM 2004-132
[13] N. Jacobson, Basic algebra, II, W. H. Freeman and Co., New York, 1989 | MR | Zbl
[14] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math., 85 (1963), 327–404 | DOI | MR | Zbl
[15] P. P. Kulish, E. K. Sklyanin, “Algebraic structure related to the reflection equation”, J. Phys. A, 25 (1992), 5963–2389 | DOI | MR
[16] A. Mudrov, Quantum conjugacy classes of simple matrix groups, arXiv: math.QA/0412538 | MR
[17] R. Richardson, “An application of the Serre conjecture to semisimple algebraic groups”, Lect. Notes in Math., 848, 1981, 141–151 | MR | Zbl
[18] N. Reshetikhin, M. Semenov-Tian-Shansky, “Quantum $R$-matrices and factorization problem”, J. Geom. Phys., 5 (1988), 533–550 | DOI | MR | Zbl
[19] R. Steinberg, “Regular elements of semisimple algebraic groups”, Pabl. Math. IHES, 25 (1965), 49–80 | MR
[20] M. Semenov-Tian-Shansky, “Poisson–Lie Groups, Quantum Duality Principle, and the Quantum Double”, Contemp. Math., 175 (1994), 219–248 | MR | Zbl
[21] L. A. Takhtajan, “Introduction to quantum groups”, Quantum Groups (Clausthal, 1989), Lecture Notes in Phys., 370, International Press Inc., Boston, 1989, 3–28 | MR
[22] E. Vinberg, A. Onishchik, Seminar po gruppam Li i algebraicheskim gruppam, M., 1988 | MR
[23] H. Weyl, The classical groups. Their invariants and representations, New Jersey, Princeton, 1966 | MR