On quantization of the Semenov--Tian--Shansky Poisson bracket on simple algebraic groups
Algebra i analiz, Tome 18 (2006) no. 5, pp. 156-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a simple complex factorizable Poisson algebraic group. Let $\mathcal U_\hbar(\mathfrak g)$ be the corresponding quantum group. We study the $\mathcal U_\hbar(\mathfrak g)$-equivariant quantization $\mathcal C_\hbar[G]$ of the affine coordinate ring $\mathcal C[G]$ along the Semenov–Tian–Shansky bracket. For a simply connected group $G$, we give an elementary proof for the analog of the Kostant–Richardson theorem stating that $\mathcal C_\hbar[G]$ is a free module over its center.
Keywords: Poisson Lie manifolds, quantum groups, equivariant quantization.
@article{AA_2006_18_5_a6,
     author = {A. Mudrov},
     title = {On quantization of the {Semenov--Tian--Shansky} {Poisson} bracket on simple algebraic groups},
     journal = {Algebra i analiz},
     pages = {156--172},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_5_a6/}
}
TY  - JOUR
AU  - A. Mudrov
TI  - On quantization of the Semenov--Tian--Shansky Poisson bracket on simple algebraic groups
JO  - Algebra i analiz
PY  - 2006
SP  - 156
EP  - 172
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_5_a6/
LA  - en
ID  - AA_2006_18_5_a6
ER  - 
%0 Journal Article
%A A. Mudrov
%T On quantization of the Semenov--Tian--Shansky Poisson bracket on simple algebraic groups
%J Algebra i analiz
%D 2006
%P 156-172
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_5_a6/
%G en
%F AA_2006_18_5_a6
A. Mudrov. On quantization of the Semenov--Tian--Shansky Poisson bracket on simple algebraic groups. Algebra i analiz, Tome 18 (2006) no. 5, pp. 156-172. http://geodesic.mathdoc.fr/item/AA_2006_18_5_a6/

[1] P. Baumann, “Another proof of Joseph and Letzter's separation of variables theorem for quantum groups”, Transform. Groups, 5 (2000), 3–20 | DOI | MR

[2] A. A. Belavin, V. G. Drinfeld, Triangle equations and simple Lie algebras, Classic Rev. Math. and Math. Phys., 1, Harwood Academic Publishers, Amsterdam, 1998 | MR | Zbl

[3] P. N. Pyatov, P. A. Saponov, “Characteristic relations for quantum matrices”, J. Phys. A, 28 (1995), 4415–4421 | DOI | MR | Zbl

[4] V. Drinfel'd, “Quantum groups”, Proc. Int. Congress of Mathematicians (Berkeley, 1986), ed. A. V. Gleason, AMS, Providence, 1987, 798–820 | MR

[5] V. Drinfeld, “Almost cocommutative Hopf algebras”, Leningrad Math. J., 1:2 (1990), 321–342 | MR

[6] V. Drinfeld, “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR

[7] J. Donin, A. Mudrov, “Reflection Equation, Twist and Equivariant Quantization”, Isr. J. Math., 136 (2003), 11–28 | DOI | MR | Zbl

[8] P. Etingof, D. Kazhdan, “Quantization of Lie bialgebras”, Selecta Math., 2:1 (1996), 1–41 | DOI | MR | Zbl

[9] G. Fiore, “Quantum groups $SO_q(N)$, $Sp_q(n)$ have $q$-determinants, too”, J. Phys. A, 27 (1994), 3795–3802 | DOI | MR | Zbl

[10] L. Faddeev, N. Reshetikhin, L. Takhtajan, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR

[11] P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York, 1978 | MR | Zbl

[12] A. Isaev, Quantum groups and Yang–Baxter equation, Preprint MPIM 2004-132

[13] N. Jacobson, Basic algebra, II, W. H. Freeman and Co., New York, 1989 | MR | Zbl

[14] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math., 85 (1963), 327–404 | DOI | MR | Zbl

[15] P. P. Kulish, E. K. Sklyanin, “Algebraic structure related to the reflection equation”, J. Phys. A, 25 (1992), 5963–2389 | DOI | MR

[16] A. Mudrov, Quantum conjugacy classes of simple matrix groups, arXiv: math.QA/0412538 | MR

[17] R. Richardson, “An application of the Serre conjecture to semisimple algebraic groups”, Lect. Notes in Math., 848, 1981, 141–151 | MR | Zbl

[18] N. Reshetikhin, M. Semenov-Tian-Shansky, “Quantum $R$-matrices and factorization problem”, J. Geom. Phys., 5 (1988), 533–550 | DOI | MR | Zbl

[19] R. Steinberg, “Regular elements of semisimple algebraic groups”, Pabl. Math. IHES, 25 (1965), 49–80 | MR

[20] M. Semenov-Tian-Shansky, “Poisson–Lie Groups, Quantum Duality Principle, and the Quantum Double”, Contemp. Math., 175 (1994), 219–248 | MR | Zbl

[21] L. A. Takhtajan, “Introduction to quantum groups”, Quantum Groups (Clausthal, 1989), Lecture Notes in Phys., 370, International Press Inc., Boston, 1989, 3–28 | MR

[22] E. Vinberg, A. Onishchik, Seminar po gruppam Li i algebraicheskim gruppam, M., 1988 | MR

[23] H. Weyl, The classical groups. Their invariants and representations, New Jersey, Princeton, 1966 | MR