Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of Abelian varieties
Algebra i analiz, Tome 18 (2006) no. 5, pp. 72-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete classification is obtained for finite connected flat commutative group schemes over mixed characteristic complete discrete valuation rings. The group schemes are classified in terms of their Cartier modules. The equivalence of various definitions of the tangent space and the dimension for these group schemes is proved. This shows that the minimal dimension of a formal group law that contains a given connected group scheme $S$ as a closed subgroup is equal to the minimal number of generators for the coordinate ring of $S$. The following reduction criteria for Abelian varieties are deduced. Suppose $K$ is a mixed characteristic local field with residue field of characteristic $p$, $L$ is a finite extension of $K$, and $\mathfrak{O}_K\subset\mathfrak{O}_L$ are the rings of integers for $K$ and $L$. Let $e$ be the absolute ramification index of $L$, let $s=[\log_p(pe/(p-1))]$, let $e_0$ be the ramification index of $L/K$, and let $l=2s+v_p(e_0)+1$. For a finite flat commutative $\mathfrak{O}_L$-group scheme $H$, denote by $TH$ the $\mathfrak{O}_L$-dual to $J/J^2$. Here $J$ is the augmentation ideal of the coordinate ring of $H$. Let $V$ be an $m$-dimensional Abelian variety over $K$. Suppose that $V$ has semistable reduction over $L$. Theorem (A). {\sl $V$ has semistable reduction over $K$ if and only if for some group scheme $H$ over $\mathfrak{O}_K$ there exist embeddings of $H_K$ in $\operatorname{Ker}[p^{l}]_{V,K}$ and of $(\mathfrak{O}_L/p^l\mathfrak{O}_L)^m$ in $TH_{\mathfrak{O}_K}$.} Theorem (B). {\sl $V$ has ordinary reduction over $K$ if and only if for some $H_K\subset\operatorname{Ker}[p^{l}]_{V,K}$ and $M$ unramified over $K$ we have $H_M\cong(\mu_{p^{l},M})^m$. Here $\mu$ denotes the group scheme of roots of unity.}
@article{AA_2006_18_5_a3,
     author = {M. V. Bondarko},
     title = {Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of {Abelian} varieties},
     journal = {Algebra i analiz},
     pages = {72--98},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_5_a3/}
}
TY  - JOUR
AU  - M. V. Bondarko
TI  - Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of Abelian varieties
JO  - Algebra i analiz
PY  - 2006
SP  - 72
EP  - 98
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_5_a3/
LA  - ru
ID  - AA_2006_18_5_a3
ER  - 
%0 Journal Article
%A M. V. Bondarko
%T Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of Abelian varieties
%J Algebra i analiz
%D 2006
%P 72-98
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_5_a3/
%G ru
%F AA_2006_18_5_a3
M. V. Bondarko. Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of Abelian varieties. Algebra i analiz, Tome 18 (2006) no. 5, pp. 72-98. http://geodesic.mathdoc.fr/item/AA_2006_18_5_a3/

[1] Bondarko M. V., “Local Leopoldt's problem for rings of integers in abelian $p$-extensions of complete discrete valuation fields”, Doc. Math., 2000, no. 5, 657–693 | MR | Zbl

[2] Bondarko M. V., “Yavnaya klassifikatsiya formalnykh grupp nad polnymi diskretno normirovannymi polyami s nesovershennym polem vychetov”, Tr. S-Peterburg. matem. ob-va, 11, 2005, 1–36

[3] Bondarko M. V., “Obschii sloi konechnykh gruppovykh skhem; “konechnyi dikii” kriterii khoroshei reduktsii abelevykh mnogoobrazii”, Izv. RAN ser. matem., 70:4 (2006), 21–52 | MR | Zbl

[4] Bondarko M. V., Vostokov S. V., “Yavnaya klassifikatsiya formalnykh grupp nad lokalnymi polyami”, Trudy MIAN, 241, 2003, 43–67 | MR | Zbl

[5] Conrad B., “Finite group schemes over bases with low ramification”, Compositio Math., 119 (1999), 239–320 | DOI | MR | Zbl

[6] Grothendieck A., Séminare de géométrie algebrique, Expose IX, Lecture Notes in Math., 288, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR

[7] Hazewinkel M., Formal groups and applications, Springer-Verlag, Berlin–Heidelberg–New York, 1978 | MR

[8] Mazur B., Tate J., “Canonical height pairings via biextensions”, Arithmetic and geometry, V. I, Progr. Math., 35, Birkhäuser Boston, Boston, MA, 1983, 195–237 | MR

[9] Oort F., “Dieudonné modules of finite local group schemes”, Indag. Math., 37 (1975), 103–123 | MR

[10] Oort F., Tate J., “Group schemes of prime order”, Ann. Sci. École Norm. Sup., 3:4 (1970), 1–21 | MR | Zbl

[11] Raynaud M., “Schemas en groupes de type $(p,\dots,p)$”, Bull. Soc. Math. France, 102 (1974), 241–280 | MR | Zbl

[12] Silverberg A., Zarhin Yu. G., “Reduction of abelian varieties”, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C. Math. Phys. Sci., 548, 2000, 495–513 | MR | Zbl

[13] Silverberg A., Zarhin Yu. G., “Semistable reduction of abelian varieties over extensions of small degree”, J. Pure Appl. Algebra, 132:2 (1998), 179–193 | DOI | MR | Zbl

[14] Tate J., “$p$-divisible groups”, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, 158–183 | MR

[15] Zink Th., Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte zur Mathematik, 68, B. G. Teubner, Verlagsgesellschaft, Leipzig, 1984 | MR | Zbl

[16] Zink Th., “The display of a formal $p$-divisible group”, Cohomologies $p$-adiques et applications arithmétiques, I, Astérisque, 278, 2002, 127–248 | MR | Zbl