Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_5_a3, author = {M. V. Bondarko}, title = {Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of {Abelian} varieties}, journal = {Algebra i analiz}, pages = {72--98}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_5_a3/} }
TY - JOUR AU - M. V. Bondarko TI - Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of Abelian varieties JO - Algebra i analiz PY - 2006 SP - 72 EP - 98 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2006_18_5_a3/ LA - ru ID - AA_2006_18_5_a3 ER -
%0 Journal Article %A M. V. Bondarko %T Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of Abelian varieties %J Algebra i analiz %D 2006 %P 72-98 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2006_18_5_a3/ %G ru %F AA_2006_18_5_a3
M. V. Bondarko. Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of Abelian varieties. Algebra i analiz, Tome 18 (2006) no. 5, pp. 72-98. http://geodesic.mathdoc.fr/item/AA_2006_18_5_a3/
[1] Bondarko M. V., “Local Leopoldt's problem for rings of integers in abelian $p$-extensions of complete discrete valuation fields”, Doc. Math., 2000, no. 5, 657–693 | MR | Zbl
[2] Bondarko M. V., “Yavnaya klassifikatsiya formalnykh grupp nad polnymi diskretno normirovannymi polyami s nesovershennym polem vychetov”, Tr. S-Peterburg. matem. ob-va, 11, 2005, 1–36
[3] Bondarko M. V., “Obschii sloi konechnykh gruppovykh skhem; “konechnyi dikii” kriterii khoroshei reduktsii abelevykh mnogoobrazii”, Izv. RAN ser. matem., 70:4 (2006), 21–52 | MR | Zbl
[4] Bondarko M. V., Vostokov S. V., “Yavnaya klassifikatsiya formalnykh grupp nad lokalnymi polyami”, Trudy MIAN, 241, 2003, 43–67 | MR | Zbl
[5] Conrad B., “Finite group schemes over bases with low ramification”, Compositio Math., 119 (1999), 239–320 | DOI | MR | Zbl
[6] Grothendieck A., Séminare de géométrie algebrique, Expose IX, Lecture Notes in Math., 288, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR
[7] Hazewinkel M., Formal groups and applications, Springer-Verlag, Berlin–Heidelberg–New York, 1978 | MR
[8] Mazur B., Tate J., “Canonical height pairings via biextensions”, Arithmetic and geometry, V. I, Progr. Math., 35, Birkhäuser Boston, Boston, MA, 1983, 195–237 | MR
[9] Oort F., “Dieudonné modules of finite local group schemes”, Indag. Math., 37 (1975), 103–123 | MR
[10] Oort F., Tate J., “Group schemes of prime order”, Ann. Sci. École Norm. Sup., 3:4 (1970), 1–21 | MR | Zbl
[11] Raynaud M., “Schemas en groupes de type $(p,\dots,p)$”, Bull. Soc. Math. France, 102 (1974), 241–280 | MR | Zbl
[12] Silverberg A., Zarhin Yu. G., “Reduction of abelian varieties”, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C. Math. Phys. Sci., 548, 2000, 495–513 | MR | Zbl
[13] Silverberg A., Zarhin Yu. G., “Semistable reduction of abelian varieties over extensions of small degree”, J. Pure Appl. Algebra, 132:2 (1998), 179–193 | DOI | MR | Zbl
[14] Tate J., “$p$-divisible groups”, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, 158–183 | MR
[15] Zink Th., Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte zur Mathematik, 68, B. G. Teubner, Verlagsgesellschaft, Leipzig, 1984 | MR | Zbl
[16] Zink Th., “The display of a formal $p$-divisible group”, Cohomologies $p$-adiques et applications arithmétiques, I, Astérisque, 278, 2002, 127–248 | MR | Zbl