Subspaces of de Branges spaces with prescribed growth
Algebra i analiz, Tome 18 (2006) no. 5, pp. 23-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The growth properties of de Branges spaces and their subspaces are studied. It is shown that, for each given pair of growth functions $\lambda(r)=O(r)$ and $\lambda_1=o(\lambda)$, there exist de Branges spaces of growth $\lambda$ that have a de Branges subspace of growth $\lambda_1$. This phenomenon cannot occur for a class of de Branges spaces that, in a certain sense, behave regularly along the real axis.
Keywords: de Branges space, growth function, de Branges subspace.
@article{AA_2006_18_5_a1,
     author = {A. Baranov and H. Woracek},
     title = {Subspaces of de {Branges} spaces with prescribed growth},
     journal = {Algebra i analiz},
     pages = {23--45},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_5_a1/}
}
TY  - JOUR
AU  - A. Baranov
AU  - H. Woracek
TI  - Subspaces of de Branges spaces with prescribed growth
JO  - Algebra i analiz
PY  - 2006
SP  - 23
EP  - 45
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_5_a1/
LA  - en
ID  - AA_2006_18_5_a1
ER  - 
%0 Journal Article
%A A. Baranov
%A H. Woracek
%T Subspaces of de Branges spaces with prescribed growth
%J Algebra i analiz
%D 2006
%P 23-45
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_5_a1/
%G en
%F AA_2006_18_5_a1
A. Baranov; H. Woracek. Subspaces of de Branges spaces with prescribed growth. Algebra i analiz, Tome 18 (2006) no. 5, pp. 23-45. http://geodesic.mathdoc.fr/item/AA_2006_18_5_a1/

[1] D. Alpay, A. Dijksma, J. Rovnyak, H. de Snoo, Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, Oper. Theory Adv. Appl., 96, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[2] Amer. Math. Soc. Transl. Ser. 2, 209, 2003, 21–49 | MR | Zbl

[3] A. D. Baranov, “Polynomials in the de Branges spaces of entire functions”, Ark. Math., 44:1 (2006), 16–38 | DOI | MR | Zbl

[4] C. Berg, H. Pedersen, “On the order and type of the entire functions associated with an indeterminate Hamburger moment problem”, Ark. Math., 32 (1994), 1–11 | DOI | MR | Zbl

[5] C. Berg, H. Pedersen, “Nevanlinna matrices of entire functions”, Math. Nachr., 171 (1995), 29–52 | MR | Zbl

[6] C. Berg, H. Pedersen, Logarithmic order and type of indeterminate moment problems, Preprint

[7] L. de Branges, Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs (NJ), 1968 | MR | Zbl

[8] H. Dym, H. McKean, “Applications of de Branges spaces of integral functions to prediction of stationary Gaussian processes”, Illinois J. Math., 14 (1970), 299–343 | MR | Zbl

[9] H. Dym, H. McKean, Gaussian processes, function theory, and the inverse spectral problem, Academic Press, New York, 1976 | MR | Zbl

[10] L. Golinskii, I. Mikhailova, “Hilbert spaces of entire functions as a $J$-theory subject”, Operator Theory Adv. Appl., 95 (1997), 205–251 | MR | Zbl

[11] Amer. Math. Soc. Transl. (2), 103, 1974, 1–18 | MR | Zbl

[12] 103, 1974, 19–102 | MR | Zbl

[13] M. Kaltenbäck, H. Winkler, H. Woracek, “Singularities of generalized strings”, Operator Theory Adv. Appl., 163 (2006), 191–248 | DOI | MR | Zbl

[14] M. Kaltenbäck, H. Winkler, H. Woracek, “De Branges spaces of entire functions symmetric about the origin”, Integral Equations Operator Theory, 56:4 (2006), 483–509 | DOI | MR | Zbl

[15] M. Kaltenbäck, H. Woracek, “Pontryagin spaces of entire functions, I”, Integral Equations Operator Theory, 33 (1999), 34–97 | DOI | MR | Zbl

[16] M. Kaltenbäck, H. Woracek, “Pólya class theory for Hermite–Biehler functions of finite order”, J. London Math. Soc., 68:2 (2003), 338–354 | DOI | MR | Zbl

[17] M. Kaltenbäck, H. Woracek, “De Branges spaces of exponential type: general theory of growth”, Acta Sci. Math. (Szeged), 71:1–2 (2005), 231–284 | MR | Zbl

[18] M. G. Krein, “On the theory of entire functions of exponential type”, Izv. Akad. Nauk SSSR, Ser. Matem., 11 (1947), 309–326 | MR | Zbl

[19] M. G. Krein, “On the indeterminate case in the boundary value problem for a Sturm–Liouville equation in the interval $(0,\infty)$”, Izv. Akad. Nauk SSSR, Ser. Matem., 16:4 (1952), 293–324 | MR

[20] M. G. Krein, H. Langer, “Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $\Pi_\kappa$ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen”, Math. Nachr., 77 (1977), 187–236 | DOI | MR | Zbl

[21] P. Lelong, L. Gruman, Entire functions of several variables, Grundlehren Math. Wiss., 282, Springer Verlag, Berlin, 1986 | MR | Zbl

[22] B. Levin, Nullstellenverteilung ganzer Funktionen, Akademie Verlag, Berlin, 1962 | MR

[23] X.-J. Li, “Hilbert spaces of entire functions and polynomials orthogonal on the unit circle”, Methods Appl. Anal., 1:1 (1994), 25–43 | MR

[24] J. Ortega-Cerda, K. Seip, “Fourier frames”, Ann. of Math., 155 (2002), 789–806 | DOI | MR | Zbl

[25] G. Pick, “Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden”, Math. Ann., 77 (1916), 7–23 | DOI | MR

[26] V. Pivovarchik, H. Woracek, Shifted Hermite-Biehler functions and their applications, Preprint | MR

[27] C. Remling, “Schrödinger operators and de Branges spaces”, J. Funct. Anal., 196:2 (2002), 323–394 | DOI | MR | Zbl

[28] M. Rosenblum, J. Rovnyak, Topics in Hardy classes and univalent functions, Birkhäuser Verlag, Basel, 1994 | MR | Zbl

[29] J. Rovnyak, V. Rovnyak, “Sonine spaces on entire functions”, J. Math. Anal. Appl., 27 (1969), 68–100 | DOI | MR | Zbl

[30] L. A. Rubel, Entire and meromorphic functions, Springer-Verlag, New York, 1996 | MR | Zbl

[31] H. Winkler, “On transformations of canonical systems”, Operator Theory Adv. Appl., 80 (1995), 276–288 | MR | Zbl

[32] H. Woracek, “De Branges spaces of entire functions closed under forming difference quotients”, Integral Equations Operator Theory, 37:2 (2000), 238–249 | DOI | MR | Zbl