Spectrum asymptotics for one ``nonsmooth'' variational problem with solvable constraint
Algebra i analiz, Tome 18 (2006) no. 5, pp. 1-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a previous paper by Birman and Filonov, the spectrum of the Maxwell operator with nonsmooth coefficients in Lipschitz domains was investigated. The claim that its eigenvalues obey the Weyl asymptotics was proved up to a statement about the spectrum of an auxiliary problem with constraint. The proof of that statement is given in the present paper.
@article{AA_2006_18_5_a0,
     author = {A. B. Alekseev and M. Sh. Birman and N. D. Filonov},
     title = {Spectrum asymptotics for one ``nonsmooth'' variational problem with solvable constraint},
     journal = {Algebra i analiz},
     pages = {1--22},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_5_a0/}
}
TY  - JOUR
AU  - A. B. Alekseev
AU  - M. Sh. Birman
AU  - N. D. Filonov
TI  - Spectrum asymptotics for one ``nonsmooth'' variational problem with solvable constraint
JO  - Algebra i analiz
PY  - 2006
SP  - 1
EP  - 22
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_5_a0/
LA  - ru
ID  - AA_2006_18_5_a0
ER  - 
%0 Journal Article
%A A. B. Alekseev
%A M. Sh. Birman
%A N. D. Filonov
%T Spectrum asymptotics for one ``nonsmooth'' variational problem with solvable constraint
%J Algebra i analiz
%D 2006
%P 1-22
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_5_a0/
%G ru
%F AA_2006_18_5_a0
A. B. Alekseev; M. Sh. Birman; N. D. Filonov. Spectrum asymptotics for one ``nonsmooth'' variational problem with solvable constraint. Algebra i analiz, Tome 18 (2006) no. 5, pp. 1-22. http://geodesic.mathdoc.fr/item/AA_2006_18_5_a0/

[1] A. B. Alekseev, Spektralnaya asimptotika ellipticheskikh kraevykh zadach s razreshimymi svyazyami, kandid. dis., LGU, 1977

[2] A. B. Alekseev, M. Sh. Birman, “Asimptotika spektra ellipticheskikh granichnykh zadach s razreshimymi svyazyami”, Dokl. AN SSSR, 230:3 (1976), 505–507 | MR | Zbl

[3] M. Sh. Birman, L. S. Koplienko, M. Z. Solomyak, “Otsenki spektra raznosti drobnykh stepenei samosopryazhennykh operatorov”, Izv. vuzov. Matem., 1975, no. 3, 3–10 | MR | Zbl

[4] M. Sh. Birman, M. Z. Solomyak, “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov, I, II”, Tr. MMO, 27, 1972, 3–52 ; 28, 1973, 3–34 | MR | Zbl | Zbl

[5] M. Sh. Birman, M. Z. Solomyak, “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Trudy Desyatoi matematicheskoi shkoly, In-t Matematiki AN UkrSSR, Kiev, 1974, 5–189 | MR

[6] M. Sh. Birman, M. Z. Solomyak, “Veilevskaya asimptotika spektra operatora Maksvella dlya oblastei s lipshitsevoi granitsei”, Vestn. LGU, ser. 1, 1987, no. 3, 23–28 | MR | Zbl

[7] M. Sh. Birman, M. Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987 | MR

[8] M. Sh. Birman, M. Z. Solomyak, “Glavnye osobennosti elektricheskoi sostavlyayuschei elektromagnitnogo polya v oblastyakh s ekranami”, Algebra i analiz, 5:1 (1993), 143–159 | MR | Zbl

[9] Birman M. Sh., Filonov N. D., “Weyl's asymptotics of the spectrum of the Maxwell operator with non-smooth coefficients in Lipschitz domains”, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Math. Soc., Providense, RI, 2007 | MR | Zbl

[10] M. Cwikel, “Weak type estimates for singular values and the number of bound states of Schrödinger operators”, Ann. Math. (2), 106 (1977), 93–100 | DOI | MR | Zbl

[11] H. Weyl, “Über das Spectrum der Hohlraumstrahlung”, J. Reine Angew. Math., 141 (1912), 163–181 | Zbl