Estimation of a quadratic function and the $p$-Banach--Saks property
Algebra i analiz, Tome 18 (2006) no. 4, pp. 185-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a rearrangement-invariant Banach function space on $[0,1]$, and let $\Gamma(E)$ denote the set of all $p\ge 1$ such that any sequence $\{x_n\}$ in $E$ converging weakly to 0 has a subsequence $\{y_n\}$ with $\sup_m m^{-1/p}\|\sum_{1\le k\le m}y_n\|\infty$. The set $\Gamma_i(E)$ is defined similarly, but only sequences $\{x_n\}$ of independent random variables are taken into account. It is proved (under the assumption $\Gamma(E)\ne\{1\}$) that if $\Gamma_i(E)\setminus\Gamma(E)\ne\varnothing$, then $\Gamma_i(E)\setminus\Gamma(E)=\{2\}$.
@article{AA_2006_18_4_a6,
     author = {E. M. Semenov and F. A. Sukochev},
     title = {Estimation of a quadratic function and the $p${-Banach--Saks} property},
     journal = {Algebra i analiz},
     pages = {185--197},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_4_a6/}
}
TY  - JOUR
AU  - E. M. Semenov
AU  - F. A. Sukochev
TI  - Estimation of a quadratic function and the $p$-Banach--Saks property
JO  - Algebra i analiz
PY  - 2006
SP  - 185
EP  - 197
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_4_a6/
LA  - ru
ID  - AA_2006_18_4_a6
ER  - 
%0 Journal Article
%A E. M. Semenov
%A F. A. Sukochev
%T Estimation of a quadratic function and the $p$-Banach--Saks property
%J Algebra i analiz
%D 2006
%P 185-197
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_4_a6/
%G ru
%F AA_2006_18_4_a6
E. M. Semenov; F. A. Sukochev. Estimation of a quadratic function and the $p$-Banach--Saks property. Algebra i analiz, Tome 18 (2006) no. 4, pp. 185-197. http://geodesic.mathdoc.fr/item/AA_2006_18_4_a6/

[1] Astashkin S. B., Semenov E. M., Sukochev F. A., “The Banach–Saks $p$-property”, Math. Ann., 332 (2005), 879–900 | DOI | MR | Zbl

[2] Banakh S., Teoriya lineinykh operatsii, RKhD, Izhevsk, 2001

[3] Beauzamy B., “Banach–Saks properties and spreading models”, Math. Scand., 44 (1979), 357–384 | MR | Zbl

[4] Dodds P. G., Semenov E. M., Sukochev F. A., “The Banach–Saks property in rearrangement invariant spaces”, Studia Math., 162 (2004), 263–294 | DOI | MR | Zbl

[5] Johnson W. B., “On quotiens of $L_p$ which one quotients of $l_p$”, Compositio Math., 34 (1977), 69–89 | MR | Zbl

[6] Kadec M. I., Pelczynski A., “Bases, lacunary sequences and complemented subspaces in the spaces $L_p$”, Studia Math., 21 (1962), 161–176 | MR | Zbl

[7] Krein S. G., Petunii Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[8] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[9] Lindenstrauss J., Tzafriri L., Classical Banach spaces. II. Function spaces, Springer-Verlag, Berlin, 1979 | MR | Zbl

[10] Rakov S. A., “O pokazatele Banakha–Saksa nekotorykh banakhovykh prostranstv posledovatelnostei”, Matem. zametki, 32:5 (1982), 613–625 | MR | Zbl

[11] Semenov E. M., Sukochev F. A., “Indeks Banakha–Saksa”, Matem. sb., 195:2 (2004), 117–140 | MR | Zbl

[12] Semenov E. M., Sukochev F. A., “The Banach–Saks index of rearrangement invariant spaces on $[0,1]$”, C. R. Acad. Sci., Paris. Ser. 1, 337 (2203), 397–401 | MR