Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_4_a5, author = {V. Yu. Protasov}, title = {Spectral factorization of 2-block {Toeplitz} matrices and refinement equations}, journal = {Algebra i analiz}, pages = {127--184}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_4_a5/} }
V. Yu. Protasov. Spectral factorization of 2-block Toeplitz matrices and refinement equations. Algebra i analiz, Tome 18 (2006) no. 4, pp. 127-184. http://geodesic.mathdoc.fr/item/AA_2006_18_4_a5/
[1] G. Deslauriers, S. Dubuc, “Symmetric iterative interpolation processes”, Constr. Approx., 5 (1989), 49–68 | DOI | MR | Zbl
[2] N. Dyn, J. A. Gregory, D. Levin, “Analysis of linear binary subdivision schemes for curve design”, Constr. Approx., 7 (1991), 127–147 | DOI | MR | Zbl
[3] A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, 1991 | MR
[4] I. Daubechies, J. Lagarias, “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM. J. Math. Anal., 23 (1992), 1031–1079 | DOI | MR | Zbl
[5] D. Collela, C. Heil, “Characterization of scaling functions. I. Continuous solutions”, SIAM J. Matrix Anal. Appl., 15 (1994), 496–518 | DOI | MR
[6] G. Strang, “Eigenvalues of Toeplitz matrices with $1\times2$ blocks”, Zeit. Angew. Math. Mech., 76 (1996), 37–39 | Zbl
[7] C. A. Cabrelli, C. Heil, U. M. Molter, “Polynomial reproduction by refinable functions”, Advances in Wavelets (Hong Kong, 1997), Springer, Singapore, 1999, 121–161 | MR
[8] T. N. T. Goodman, C. A. Micchelli, G. Rodriguez, S. Seatzu, “Spectral factorization of Laurent polynomials”, Adv. Comput. Math., 7:4 (1997), 429–454 | DOI | MR | Zbl
[9] L. Berg, G. Plonka, “Spectral properties of two-slanted matrices”, Results Math., 35:3–4 (1999), 201–215 | MR | Zbl
[10] L. Berg, G. Plonka, Functional Equations and Inequalities, Math. Appl., 518, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl
[11] V. Protasov, “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:6 (2000), 55–77 | DOI | MR
[12] V. Yu. Protasov, “Asimptotika funktsii razbieniya”, Matem. sb., 191:3 (2000), 65–98 | MR | Zbl
[13] V. Yu. Protasov, “Fraktalnye krivye i vspleski”, Izv. RAN. Ser. matem., 70:5 (2006), 123–162 | MR | Zbl
[14] I. Dobeshi, Desyat lektsii po veivletam, NITs RKhD, Izhevsk, 2001
[15] W. Lawton, S. L. Lee, Z. Shen, “Characterization of compactly supported refinable splines”, Adv. Comput. Math., 3:1–2 (1995), 137–145 | DOI | MR | Zbl
[16] V. Yu. Protasov, “Kusochno-gladkie masshtabiruyuschie funktsii”, Algebra i analiz, 16:5 (2004), 101–123 | MR | Zbl
[17] C. A. Micchelli, H. Prautzsch, “Uniform refinement of curves”, Linear Alg. Appl., 114–115 (1989), 841–870 | DOI | MR | Zbl
[18] K. S. Lau, J. Wang, “Characterization of $L_p$-solutions for two-scale dilation equations”, SIAM. J. Math. Anal., 26 (1995), 1018–1046 | DOI | MR | Zbl
[19] G. Gripenberg, “Computing the joint spectral radius”, Lin. Alg. Appl., 234 (1996), 43–60 | DOI | MR | Zbl
[20] V. Protasov, “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundament. i prikl. matem., 2:1 (1996), 205–231 | MR | Zbl
[21] V. Yu. Protasov, “Obobschennyi sovmestnyi spektralnyi radius. Geometricheskii podkhod”, Izv. RAN. Ser. matem., 61:5 (1997), 99–136 | MR | Zbl
[22] D. X. Zhow, “The $p$-norm joint spectral radius for even integers”, Methods Appl. Anal., 5 (1998), 39–54 | MR
[23] A. I. Kostrikin, Yu. I. Manin, Lineinaya algebra i geometriya, Nauka, M., 1986 | MR
[24] V. Protasov, “A complete solution characterizing smooth refinable functions”, SIAM J. Math.Anal., 31:6 (2000), 1332–1350 | DOI | MR | Zbl
[25] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2006
[26] M. Neamtu, “Convergence of subdivision versus solvability of refinement equations”, East J. Approx., 5:2 (1999), 183–210 | MR | Zbl
[27] R. Q. Jia, “Subdivision schemes in $L_p$ spaces”, Adv. Comput. Math., 3 (1995), 309–341 | DOI | MR | Zbl
[28] Z. Wu, “Convergence of subdivision schemes in $L_p$ spaces”, Appl. Math. J. Chinese Univ. Ser. B, 16:2 (2001), 171–177 | DOI | MR | Zbl
[29] D. Chen, M. Han, “Convergence of cascade algorithm for individual initial function and arbitrary refinement masks”, Sci. China Ser. A, 48:3 (2005), 350–359 | DOI | MR | Zbl
[30] A. A. Melkman, “Subdivision schemes with nonnegative masks always converge, unless they obviously cannot?”, Ann. Numer. Math., 4:1–4 (1997), 451–460 | MR | Zbl