Spectral factorization of 2-block Toeplitz matrices and refinement equations
Algebra i analiz, Tome 18 (2006) no. 4, pp. 127-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

Pairs of 2-block Toeplitz $(N\times N)$-matrices $(T_s)_{ij}=p_{2i-j+s-1}$, $s=0,1$, $i,j\in\{1,\dots,N\}$, are considered for arbitrary sequences of complex coefficients $p_0,\dots,p_N$. A complete spectral resolution of the matrices $T_0$, $T_1$ in the system of their common invariant subspaces is obtained. A criterion of nondegeneracy and of irreducibility of these matrices is derived, and their kernels, root subspaces, and all common invariant subspaces are found explicitly. The results are applied to the study of refinement functional equations and also subdivision and cascade approximation algorithms. In particular, the well-known formula for the exponent of regularity of a refinable function is simplified. A factorization theorem that represents solutions of refinement equations by certain convolutions is obtained, along with a characterization of the manifold of smooth refinable functions. The problem of continuity of solutions of the refinement equations with respect to their coefficients is solved. A criterion of convergence of the corresponding cascade algorithms is obtained, and the rate of convergence is computed.
@article{AA_2006_18_4_a5,
     author = {V. Yu. Protasov},
     title = {Spectral factorization of 2-block {Toeplitz} matrices and refinement equations},
     journal = {Algebra i analiz},
     pages = {127--184},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_4_a5/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Spectral factorization of 2-block Toeplitz matrices and refinement equations
JO  - Algebra i analiz
PY  - 2006
SP  - 127
EP  - 184
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_4_a5/
LA  - ru
ID  - AA_2006_18_4_a5
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Spectral factorization of 2-block Toeplitz matrices and refinement equations
%J Algebra i analiz
%D 2006
%P 127-184
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_4_a5/
%G ru
%F AA_2006_18_4_a5
V. Yu. Protasov. Spectral factorization of 2-block Toeplitz matrices and refinement equations. Algebra i analiz, Tome 18 (2006) no. 4, pp. 127-184. http://geodesic.mathdoc.fr/item/AA_2006_18_4_a5/

[1] G. Deslauriers, S. Dubuc, “Symmetric iterative interpolation processes”, Constr. Approx., 5 (1989), 49–68 | DOI | MR | Zbl

[2] N. Dyn, J. A. Gregory, D. Levin, “Analysis of linear binary subdivision schemes for curve design”, Constr. Approx., 7 (1991), 127–147 | DOI | MR | Zbl

[3] A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, 1991 | MR

[4] I. Daubechies, J. Lagarias, “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM. J. Math. Anal., 23 (1992), 1031–1079 | DOI | MR | Zbl

[5] D. Collela, C. Heil, “Characterization of scaling functions. I. Continuous solutions”, SIAM J. Matrix Anal. Appl., 15 (1994), 496–518 | DOI | MR

[6] G. Strang, “Eigenvalues of Toeplitz matrices with $1\times2$ blocks”, Zeit. Angew. Math. Mech., 76 (1996), 37–39 | Zbl

[7] C. A. Cabrelli, C. Heil, U. M. Molter, “Polynomial reproduction by refinable functions”, Advances in Wavelets (Hong Kong, 1997), Springer, Singapore, 1999, 121–161 | MR

[8] T. N. T. Goodman, C. A. Micchelli, G. Rodriguez, S. Seatzu, “Spectral factorization of Laurent polynomials”, Adv. Comput. Math., 7:4 (1997), 429–454 | DOI | MR | Zbl

[9] L. Berg, G. Plonka, “Spectral properties of two-slanted matrices”, Results Math., 35:3–4 (1999), 201–215 | MR | Zbl

[10] L. Berg, G. Plonka, Functional Equations and Inequalities, Math. Appl., 518, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl

[11] V. Protasov, “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:6 (2000), 55–77 | DOI | MR

[12] V. Yu. Protasov, “Asimptotika funktsii razbieniya”, Matem. sb., 191:3 (2000), 65–98 | MR | Zbl

[13] V. Yu. Protasov, “Fraktalnye krivye i vspleski”, Izv. RAN. Ser. matem., 70:5 (2006), 123–162 | MR | Zbl

[14] I. Dobeshi, Desyat lektsii po veivletam, NITs RKhD, Izhevsk, 2001

[15] W. Lawton, S. L. Lee, Z. Shen, “Characterization of compactly supported refinable splines”, Adv. Comput. Math., 3:1–2 (1995), 137–145 | DOI | MR | Zbl

[16] V. Yu. Protasov, “Kusochno-gladkie masshtabiruyuschie funktsii”, Algebra i analiz, 16:5 (2004), 101–123 | MR | Zbl

[17] C. A. Micchelli, H. Prautzsch, “Uniform refinement of curves”, Linear Alg. Appl., 114–115 (1989), 841–870 | DOI | MR | Zbl

[18] K. S. Lau, J. Wang, “Characterization of $L_p$-solutions for two-scale dilation equations”, SIAM. J. Math. Anal., 26 (1995), 1018–1046 | DOI | MR | Zbl

[19] G. Gripenberg, “Computing the joint spectral radius”, Lin. Alg. Appl., 234 (1996), 43–60 | DOI | MR | Zbl

[20] V. Protasov, “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundament. i prikl. matem., 2:1 (1996), 205–231 | MR | Zbl

[21] V. Yu. Protasov, “Obobschennyi sovmestnyi spektralnyi radius. Geometricheskii podkhod”, Izv. RAN. Ser. matem., 61:5 (1997), 99–136 | MR | Zbl

[22] D. X. Zhow, “The $p$-norm joint spectral radius for even integers”, Methods Appl. Anal., 5 (1998), 39–54 | MR

[23] A. I. Kostrikin, Yu. I. Manin, Lineinaya algebra i geometriya, Nauka, M., 1986 | MR

[24] V. Protasov, “A complete solution characterizing smooth refinable functions”, SIAM J. Math.Anal., 31:6 (2000), 1332–1350 | DOI | MR | Zbl

[25] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2006

[26] M. Neamtu, “Convergence of subdivision versus solvability of refinement equations”, East J. Approx., 5:2 (1999), 183–210 | MR | Zbl

[27] R. Q. Jia, “Subdivision schemes in $L_p$ spaces”, Adv. Comput. Math., 3 (1995), 309–341 | DOI | MR | Zbl

[28] Z. Wu, “Convergence of subdivision schemes in $L_p$ spaces”, Appl. Math. J. Chinese Univ. Ser. B, 16:2 (2001), 171–177 | DOI | MR | Zbl

[29] D. Chen, M. Han, “Convergence of cascade algorithm for individual initial function and arbitrary refinement masks”, Sci. China Ser. A, 48:3 (2005), 350–359 | DOI | MR | Zbl

[30] A. A. Melkman, “Subdivision schemes with nonnegative masks always converge, unless they obviously cannot?”, Ann. Numer. Math., 4:1–4 (1997), 451–460 | MR | Zbl