Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_1_a1, author = {R. W. Barnard and C. Richardson and A. Yu. Solynin}, title = {A minimal area problem for nonvanishing functions}, journal = {Algebra i analiz}, pages = {34--54}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_1_a1/} }
R. W. Barnard; C. Richardson; A. Yu. Solynin. A minimal area problem for nonvanishing functions. Algebra i analiz, Tome 18 (2006) no. 1, pp. 34-54. http://geodesic.mathdoc.fr/item/AA_2006_18_1_a1/
[1] Aharonov D., Bénéteau C., Khavinson D., Shapiro H., “Extremal problems for nonvanishing functions in Bergman spaces”, Selected Topics in Complex Analysis. S. Ya. Khavinson Memorial Volume, Oper. Theory Adv. Appl., 158, eds. V. Eiderman and M. Samokhin, Birkhäuser, Basel, 2005, 59–86 | MR | Zbl
[2] Aharonov D., Shapiro H. S., Solynin A. Yu., “A minimal area problem in conformal mapping”, J. Anal. Math., 78 (1999), 157–176 | DOI | MR | Zbl
[3] Aharonov D., Shapiro H. S., Solynin A. Yu., “Minimal area problems for functions with integral representation”, J. Anal. Math., 98 (2006) | DOI | MR | Zbl
[4] Barnard R. W., Richardson C., Solynin A. Yu., “Concentration of area in half-planes”, Proc. Amer. Math. Soc., 133:7 (2005), 2091–2099 | DOI | MR | Zbl
[5] Barnard R. W., Solynin A. Yu., “Local variations and minimal area problem for Carathéodory functions”, Indiana Univ. Math. J., 53:1 (2004), 135–167 | DOI | MR | Zbl
[6] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1(295) (1994), 3–76 | MR | Zbl
[7] Duren P., Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983 | MR | Zbl
[8] Hayman W. K., Multivalent functions, 2nd ed., Cambridge Tracts in Math., 110, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[9] Hayman W. K., Kennedy P. B., Subharmonic functions, vol. I, London Math. Soc. Monogr., 9, Academic Press, London–New York, 1976 | MR | Zbl
[10] Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl