A minimal area problem for nonvanishing functions
Algebra i analiz, Tome 18 (2006) no. 1, pp. 34-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimal area covered by the image of the unit disk is found for nonvanishing univalent functions normalized by the conditions $f(0)=1$, $f'(0)=\alpha$. Two different approaches are discussed, each of which contributes to the complete solution of the problem. The first approach reduces the problem, via symmetrization, to the class of typically real functions, where the well-known integral representation can be employed to obtain the solution upon a priori knowledge of the extremal function. The second approach, requiring smoothness assumptions, leads, via some variational formulas, to a boundary value problem for analytic functions, which admits an explicit solution.
Keywords: minimal area problem, nonvanishing analytic function, typically real function, symmetrization.
@article{AA_2006_18_1_a1,
     author = {R. W. Barnard and C. Richardson and A. Yu. Solynin},
     title = {A minimal area problem for nonvanishing functions},
     journal = {Algebra i analiz},
     pages = {34--54},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_1_a1/}
}
TY  - JOUR
AU  - R. W. Barnard
AU  - C. Richardson
AU  - A. Yu. Solynin
TI  - A minimal area problem for nonvanishing functions
JO  - Algebra i analiz
PY  - 2006
SP  - 34
EP  - 54
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_1_a1/
LA  - en
ID  - AA_2006_18_1_a1
ER  - 
%0 Journal Article
%A R. W. Barnard
%A C. Richardson
%A A. Yu. Solynin
%T A minimal area problem for nonvanishing functions
%J Algebra i analiz
%D 2006
%P 34-54
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_1_a1/
%G en
%F AA_2006_18_1_a1
R. W. Barnard; C. Richardson; A. Yu. Solynin. A minimal area problem for nonvanishing functions. Algebra i analiz, Tome 18 (2006) no. 1, pp. 34-54. http://geodesic.mathdoc.fr/item/AA_2006_18_1_a1/

[1] Aharonov D., Bénéteau C., Khavinson D., Shapiro H., “Extremal problems for nonvanishing functions in Bergman spaces”, Selected Topics in Complex Analysis. S. Ya. Khavinson Memorial Volume, Oper. Theory Adv. Appl., 158, eds. V. Eiderman and M. Samokhin, Birkhäuser, Basel, 2005, 59–86 | MR | Zbl

[2] Aharonov D., Shapiro H. S., Solynin A. Yu., “A minimal area problem in conformal mapping”, J. Anal. Math., 78 (1999), 157–176 | DOI | MR | Zbl

[3] Aharonov D., Shapiro H. S., Solynin A. Yu., “Minimal area problems for functions with integral representation”, J. Anal. Math., 98 (2006) | DOI | MR | Zbl

[4] Barnard R. W., Richardson C., Solynin A. Yu., “Concentration of area in half-planes”, Proc. Amer. Math. Soc., 133:7 (2005), 2091–2099 | DOI | MR | Zbl

[5] Barnard R. W., Solynin A. Yu., “Local variations and minimal area problem for Carathéodory functions”, Indiana Univ. Math. J., 53:1 (2004), 135–167 | DOI | MR | Zbl

[6] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1(295) (1994), 3–76 | MR | Zbl

[7] Duren P., Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983 | MR | Zbl

[8] Hayman W. K., Multivalent functions, 2nd ed., Cambridge Tracts in Math., 110, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[9] Hayman W. K., Kennedy P. B., Subharmonic functions, vol. I, London Math. Soc. Monogr., 9, Academic Press, London–New York, 1976 | MR | Zbl

[10] Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl