Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_1_a0, author = {D. Auckly and L. Kapitanski and J. M. Speight}, title = {Geometry and analysis in nonlinear sigma models}, journal = {Algebra i analiz}, pages = {3--33}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_1_a0/} }
D. Auckly; L. Kapitanski; J. M. Speight. Geometry and analysis in nonlinear sigma models. Algebra i analiz, Tome 18 (2006) no. 1, pp. 3-33. http://geodesic.mathdoc.fr/item/AA_2006_18_1_a0/
[1] Auckly D., Kapitanski L., “Holonomy and Skyrme's model”, Comm. Math. Phys., 240 (2003), 97–122 | DOI | MR | Zbl
[2] Auckly D., Kapitanski L., “Analysis of $S^2$-valued maps and Faddeev's model”, Comm. Math. Phys., 256 (2005), 611–620 | DOI | MR | Zbl
[3] Auckly D., Kapitanski L., The Pontrjagin–Hopf invariants for Sobolev maps, submitted
[4] Auckly D., Kapitanski L., Integrality of homotopy invariants in the Skyrme model, in preparation
[5] Auckly D., Speight J. M., Fermionic quantization and configuration spaces for the Skyrme and Faddeev–Hopf models, preprint, http://arxiv.org/abs/hep-th/0411010 | MR
[6] Balachandran A., Marmo G., Skagerstam B., Stern A., Classical topology and quantum states, World Sci. Publ. Co., Inc., River Edge, NJ, 1991 | MR
[7] Battye R. A., Sutcliffe P. M., “Skyrmions, fullerenes and rational maps”, Rev. Math. Phys., 14 (2002), 29–85 | DOI | MR | Zbl
[8] Bopp F., Haag Z., “Über die Möglichkeit von Spinmodellen”, Z. Naturforschung, 5a (1950), 644–653 | MR
[9] Bott R., Tu L. W., Differential forms in algebraic topology, Grad. Texts is Math., 82, Springer-Verlag, New York–Berlin, 1982 | MR | Zbl
[10] Brezis H., “The interplay between analysis and topology in some nonlinear PDE problems”, Bull. Amer. Math. Soc. (N.S.), 40 (2003), 179–201 | DOI | MR | Zbl
[11] Dirac P., “The theory of magnetic poles”, Phys. Rev. (2), 74 (1948), 817–830 | DOI | MR | Zbl
[12] Faddeev L. D., Quantization of solitons, Preprint IAS print-75-QS70, 1975 | MR
[13] Faddeev L. D., “Knotted solitons and their physical applications”, Topological Methods in the Physical Sciences (London, 2000), R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 359, 2001, 1399–1403 | DOI | MR | Zbl
[14] Faddeev L. D., Niemi A. J., “Stable knot-like structures in classical field theory”, Nature, 387 (1997), 58–61 | DOI
[15] Federer H., “A study of function spaces by spectral sequences”, Trans. Amer. Math. Soc., 82 (1956), 340–361 | DOI | MR | Zbl
[16] Finkelstein D., Rubinstein J., “Connection between spin, statisitics, and kinks”, J. Math. Phys., 9 (1968), 1762–1779 | DOI | MR | Zbl
[17] Gisiger T., Paranjape M. B., “Recent mathematical developments in the Skyrme model”, Phys. Rep., 306:3 (1998), 109–211 | DOI | MR
[18] Giulini D., “On the possibility of spinorial quantization in the Skyrme model”, Modern Phys. Lett. A, 8 (1993), 1917–1924 | DOI | MR | Zbl
[19] Hansen V. L., http://www.mat.dtu.dk/people/V.L.Hansen/string.html
[20] Hietarinta J., Salo P., “Ground state in the Faddeev–Skyrme model”, Phys. Rev. D, 62 (2000), 081701(R) | DOI
[21] Kapitanski L., “On Skyrme's model”, Nonlinear Problems in Mathematical Physics and Related Topics, II, Int. Math. Ser. (N.Y.), 2, Kluwer/Plenum, New York, 2002, 229–241 | MR | Zbl
[22] Kirby R. C., The topology of 4-manifolds, Lecture Notes in Math., 1374, Springer-Verlag, Berlin, 1989 | MR | Zbl
[23] Koshkin S., Homogeneous spaces and Faddeev–Skyrme models, Dissertation, Kansas State Univ., 2006
[24] Mandl F., Shaw G., Quantum field theory, Wiley, 1991
[25] Pontrjagin L., “A classification of mappings of the three-dimensional complex into the two-dimensional sphere”, Mat. sb., 9(51):2 (1941), 331–363 | MR | Zbl
[26] Rajaraman R., Solitons and instantons, North-Holland, Amsterdam, 1982 | MR | Zbl
[27] Schulman L., “A path integral for spin”, Phys. Rev. (2), 176 (1968), 1558–1569 | DOI | MR
[28] Simms D. J., Woodhouse N. M. J., Lectures in geometric quantization, Lecture Notes in Phys., 53, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl
[29] Skyrme T. H. R., “A unified field theory of mesons and baryons”, Nuclear Phys., 31 (1962), 556–569 | DOI | MR
[30] Sorkin R., “A general relation between kink-exchange and kink-rotation”, Comm. Math. Phys., 115 (1988), 421–434 | DOI | MR | Zbl
[31] Vakulenko A. F., Kapitanskii L. V., “Ustoichivost solitonov v $S^2$-nelineinoi $\sigma$-modeli”, Dokl. AN SSSR, 246:4 (1979), 840–842 | MR | Zbl
[32] Weinberg S., The quantum theory of fields, vol. 1, Cambridge Univ. Press, Cambridge, 1996
[33] White B., “Homotopy classes in Sobolev spaces and the existence of energy minimizing maps”, Acta Math., 160 (1988), 1–17 | DOI | MR | Zbl
[34] Witten E., “Current algebra, baryons, and quark confinement”, Nuclear Phys. B, 233 (1983), 433–444 | DOI | MR
[35] Zaccaria F., Sudarshan E., Nilsson J., Mukunda N., Marmo G., Balachandran A., “Universal unfolding of Hamiltonian systems: from symplectic structure to fiber bundles”, Phys. Rev. D (3), 27 (1983), 2327–2340 | DOI | MR