What does a~typical Markov operator look like?
Algebra i analiz, Tome 17 (2005) no. 5, pp. 91-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2005_17_5_a2,
     author = {A. M. Vershik},
     title = {What does a~typical {Markov} operator look like?},
     journal = {Algebra i analiz},
     pages = {91--104},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_5_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - What does a~typical Markov operator look like?
JO  - Algebra i analiz
PY  - 2005
SP  - 91
EP  - 104
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_5_a2/
LA  - ru
ID  - AA_2005_17_5_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%T What does a~typical Markov operator look like?
%J Algebra i analiz
%D 2005
%P 91-104
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_5_a2/
%G ru
%F AA_2005_17_5_a2
A. M. Vershik. What does a~typical Markov operator look like?. Algebra i analiz, Tome 17 (2005) no. 5, pp. 91-104. http://geodesic.mathdoc.fr/item/AA_2005_17_5_a2/

[1] Vershik A. M., “Polymorphisms, Markov processes, quasi-similarity”, Discrete Contin. Dynam. Systems, 13:2 (2005) ; arXiv:math.DS/0409492 | MR | Zbl

[2] Vershik A. M., “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie operatory”, Zap. nauch. semin. LOMI, 72, 1977, 26–61 | Zbl

[3] Vershik A. M., “Sverkhgrubost giperbolicheskikh avtomorfizmov i unitarnye dilatatsii markovskikh operatorov”, Vestn. Leningr. un-ta. Ser. 1, 1987, no. 3, 28–33 | MR | Zbl

[4] Vershik A. M., Ladyzhenskaya O. A., “Ob evolyutsii mer, opredelyaemoi uravneniyami Nave–Stoksa, i o razreshimosti zadachi Koshi dlya statisticheskogo uravneniya Khopfa”, Dokl. AN SSSR, 226:1 (1976), 26–29 | MR | Zbl

[5] Ladyzhenskaya O. A., Vershik A. M., “Sur l'evolution des mesures déterminées par les équations de Navier–Stokes et la résolution du problème de Cauchy pour l'equation statistique de E. Hopf”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4 (1977), 209–230 | MR | Zbl

[6] Rosenblatt M., Markov processes. Structure and asymptotic behavior, Grundlehren Math. Wiss., 184, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl

[7] Sz.-Nagy B., Foiač C., Harmonic analysis of operators on Hilbert spaces, Akad. Kiadó, North-Holland Publ. Co.,, Budapest, Amsterdam–London, 1970 | MR

[8] Sudakov V. N., Geometricheskie problemy teorii beskonechnomernykh veroyatnostnykh raspredelenii, Tr. Mat. in-ta AN SSSR, 141, 1976, 190 pp. | MR | Zbl

[9] Revyuz D., Tsepi Markova, RFFI, M., 1997

[10] Yuzvinskii S. A., “O metricheskikh avtomorfizmakh s prostym spektrom”, Dokl. AN SSSR, 172:5 (1967), 1036–1038 | Zbl

[11] Felps R. R., Lektsii o teoremakh Shoke, Mir, M., 1968

[12] Vershik A. M., “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, Uspekhi mat. nauk, 55:4(334) (2000), 59–128 | MR | Zbl

[13] Kalikow S., “$(T,T^{-1})$-transformation is not loosely Bernoulli”, Ann. of Math. (2), 115 (1982), 393–409 | DOI | MR | Zbl

[14] Downarowich T., Frei B., “Measure-theoretic and topological entropy of operators on function space”, Ergodic Theory Dynam. Systems, 25:2 (2005), 105