Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_4_a5, author = {E. A. Riss}, title = {Generation of {Borel} sets by balls}, journal = {Algebra i analiz}, pages = {181--204}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_4_a5/} }
E. A. Riss. Generation of Borel sets by balls. Algebra i analiz, Tome 17 (2005) no. 4, pp. 181-204. http://geodesic.mathdoc.fr/item/AA_2005_17_4_a5/
[1] Mejlbro L., Preiss D., Tiser J., Determination and differentiation of measures, gotovitsya k pechati
[2] Keleti T., Preiss D., “The bails do not generate alt Borel sets using complements and countable disjoint unions”, Math. Proc. Cambridge Philos. Soc., 128:3 (2000), 539–547 | DOI | MR | Zbl
[3] Olejček V., “Generation of a $q$-$\sigma$-algebra in the plane”, Proc. Conf. Topology and Measure, V (Binz, 1987), Wissensch. Beitr. Ernst–Moritz–Arndt Univ., Greifswald, 1988, 121–125 | Zbl
[4] Olejček V., “The $\sigma$-class generated by balls contains all Borel sets”, Proc. Amer. Math. Soc., 123 (1995), 3665–3675 | DOI | MR | Zbl
[5] Jackson S., Mauldin R. D., “On the $\sigma$-class generated by open balls”, Math. Proc. Cambridge Philos. Soc., 127 (1999), 99–108 | DOI | MR | Zbl
[6] Zelený M., “The Dynkin system generated by balls in $\mathbb R^d$ contains all Borel sets”, Proc. Amer. Math. Soc., 128 (2000), 433–437 | DOI | MR | Zbl
[7] Benyamini Y., Lindenstrauss J., Geometric nonlinear functional analysis, Amer. Math. Soc. Colloq. Publ., 48, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[8] Habala P., Hájek P., Zizler V., Introduction to Banach spaces, Prague, 1996 | Zbl