Condition numbers of large matrices, and analytic capacities
Algebra i analiz, Tome 17 (2005) no. 4, pp. 125-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given an operator $T\colon X\to X$ on a Banach space $X$, we compare the condition number of $T$, $\mathrm{CN}(T)=\|T\|\cdot\|T^{-1}\|$, and the spectral condition number defined as $\mathrm{SCN}(T)=\|T\|\cdot r(T^{-1}\|$, where $r(\cdot)$ stands for the spectral radius. For a set $\Upsilon T$ of operators, we put $\Phi(\Delta)=\sup\{\mathrm{CN}(T):T\in\Upsilon Y,\mathrm{SCN}(T)\leq\Delta\}$, $\Delta\in[1,\infty)$, and say that $\Upsilon Y$ is spectrally $\Phi$-conditioned. As $\Upsilon Y$ we consider certain sets of $(n\times n)$-matrices or, more generally, algebraic operators with $\deg(T)\leq n$ that admit a specific functional calculus. In particular, the following sets are included: Hilbert (Banach) space power bounded matrices (operators), polynomially bounded matrices, Kreiss type matrices, Tadmor–Ritt type matrices, and matrices (operators) admitting a Besov class $B^s_{p,q}$ functional calculus. The above function $\Phi$ is estimated in terms of the analytic capacity $\operatorname{cap}_A(\cdot)$ related to the corresponding function class $A$. In particular, for $A=B^s_{p,q}$, the quantity $\Phi(\Delta)$ is equivalent to $\Delta^n n^s$ as $\Delta\to\infty$ (or as $n\to\infty$) for $s.0$, and is bounded by $\Delta^n(\log(n))^{1/q}$ for $s=0$.
@article{AA_2005_17_4_a4,
     author = {N. K. Nikolski},
     title = {Condition numbers of large matrices, and analytic capacities},
     journal = {Algebra i analiz},
     pages = {125--180},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_4_a4/}
}
TY  - JOUR
AU  - N. K. Nikolski
TI  - Condition numbers of large matrices, and analytic capacities
JO  - Algebra i analiz
PY  - 2005
SP  - 125
EP  - 180
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_4_a4/
LA  - en
ID  - AA_2005_17_4_a4
ER  - 
%0 Journal Article
%A N. K. Nikolski
%T Condition numbers of large matrices, and analytic capacities
%J Algebra i analiz
%D 2005
%P 125-180
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_4_a4/
%G en
%F AA_2005_17_4_a4
N. K. Nikolski. Condition numbers of large matrices, and analytic capacities. Algebra i analiz, Tome 17 (2005) no. 4, pp. 125-180. http://geodesic.mathdoc.fr/item/AA_2005_17_4_a4/

[AFP] Arazy J., Fisher S., Peetre J., “Besov norms of rational functions”, Function Spaces and Applications (Lund, 1986), Lecture Notes in Math., 1302, Springer-Verlag, Berlin, 1988, 125–129 | MR

[BL] Bergh J., Löfström J., Interpolation spaces, Springer-Verlag, Berlin, 1976 | Zbl

[Bo] Bohr H., “A theorem concerning power series”, Proc. London Math. Soc. (2), 13 (1914), 1–5 | DOI | MR | Zbl

[BD] Boricheva I. A., Dynkin E. M., “Ob odnoi neklassicheskoi zadache svobodnoi interpolyatsii”, Algebra i analiz, 4:5 (1992), 45–90 | MR

[C] Carleson L., “Sets of uniqueness for functions regular in the unit circle”, Acta Math., 87:3–4 (1952), 325–345 | DOI | MR | Zbl

[D] Dynkin E. M., “Mnozhestva svobodnoi interpolyatsii dlya klassov Geldera”, Mat. sb., 109:1 (1979), 107–128 | MR

[ENZ] El-Falla O., Nikolskii N. K., Zarrabi M., “Otsenki rezolvent v algebrakh Berlinga–Soboleva”, Algebra i analiz, 10:6 (1998), 1–92 | MR | Zbl

[ER] El-Fallah O., Ransford T., “Extremal growth of powers of operators satisfying resolvent conditions of Kreiss–Ritt type”, J. Funct. Anal., 196:1 (2002), 135–154 | DOI | MR | Zbl

[G] Gantmakher F. P., Teoriya matrits, 2-oe izd., Nauka, M., 1966 | MR

[GMP] Gluskin E., Meyer M., Pajor A., “Zeros of analytic functions and norms of inverse matrices”, Israel J. Math., 87 (1994), 225–242 | DOI | MR | Zbl

[GVL] Golub G. H., Van Loan C. F., Matrix computations, 3rd ed., Johns Hopkins Univ. Press, Baltimore, MD, 1996 | MR

[GrMcG] Graham C. C., McGehee O. C., Essays in commutative harmonic analysis, Grundlehren Math. Wiss., 238, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl

[GrN] Gribov M. B., Nikolskii H. K., “Invariantnye podprostranstva i ratsionalnaya approksimatsiya”, Zap. nauch. semin. LOMI, 92, 1979, 103–114 | MR | Zbl

[HRS] Hagen R., Roch S., Silbermann B., Spectral theory of approximation methods for convolution equations, Oper. Theory Adv. Appl., 74, Birkhäuser Verlag, Basel etc., 1995 | MR

[Hor] Horn A., “On the eigenvalues of a matrix with prescribed singular values”, Proc. Amer. Math. Soc., 5 (1954), 4–7 | DOI | MR | Zbl

[K] Kahane J.-P., Séries de Fourier absolument convergentes, Ergeb. Math. Grenzgeb., 50, Springer-Verlag, Berlin–New York, 1970 | MR | Zbl

[KM] Katsnelson V. E., Matsaev V. I., “O spektralnykh mnozhestvakh operatorov v banakhovom prostranstve i otsenkakh funktsii ot konechnomernykh operatorov”, Teoriya funktsii, funktsion. anal. i ikh pril., 1966, no. 3, 3–10

[L] Lizorkin P. I., “O multiplikatorakh integralov Fure v prostranstvakh $L_{p,\theta}$”, Tr. Mat. in-ta AN SSSR, 89, 1967, 231–248 | MR | Zbl

[MO] Marshall A. W., Olkin I., Inequalities: theory of majorization and its applications, Math. Sci. Engrg., 143, Acad. Press, Inc., New York–London, 1979 | MR

[Na] Nazarov F. L., Chastnoe soobschenie, Avgust 2004, (fedja@math.msu.edu)

[Nl] Nikolski N., “In search of the invisible spectrum”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1925–1998 | MR | Zbl

[N2] Nikolski N., Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[N3] Nikolski N., Operators, functions, and systems: an easy reading. Vol. 2. Model operators and systems, Math. Surveys Monogr., 93, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[N4] Nikolski N., “Estimates of the spectral radius and the semigroup growth bound in terms of the resolvent and weak asymptotics”, Algebra i analiz, 14:4 (2002), 141–157 | MR

[N5] Nikolski N., Treatise on the shift operator, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986; Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[N6] Nikolskii N. K., Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza, Tr. Mat. in-ta AN SSSR, 120, 1974, 270 pp. | MR

[N7] Nikolskii N. K., “Invariantnye podprostranstva v teorii operatorov i teorii funktsii”, Itogi nauki i tekhn. Ser. Mat. analiz, 12, VINITI, M., 1974, 199–412

[S.Ni] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[Р] Peetre J., New thoughts on Besov spaces, Duke Univ. Math. Ser., 1, Math. Dept., Duke Univ., Durham, NC, 1976 | MR

[Pel] Peller V., “Estimates of functions of power bounded operators on Hilbert spaces”, J. Operator Theory, 7 (1982), 341–372 | MR | Zbl

[Pe2] Peller V., “Estimates of functions of Hilbert space operators, similarity to a contraction and related function algebras”, Linear and Complex Analysis Problem Book, Lecture Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 199–204

[Q] Queffelec H., “Sur un théorème de Gluskin–Meyer–Pajor”, C. R. Acad. Sci. Paris Sér. 1 Math., 317 (1993), 155–158 | MR | Zbl

[Sch] Schaffer J. J., “Norms and determinants of linear mappings”, Math. Z., 118 (1970), 331–339 | DOI | MR

[Sh] Shirokov H. A., “Mnozhestva nulei analiticheskikh funktsii iz prostranstva $B_{p,1}^{1/p}$ – karlesonovy”, Zap. nauch. semin. LOMI, 113, 1981, 253–257 | MR | Zbl

[SzNF] Harmonic analysis of operators on Hilbert space, North-Holland Publ. Co., Inc., New York, 1970 ; Mir, M., 1970 | MR

[Т] Triebel H., Spaces of Besov–Hardy–Sobolev type, Teubner Verlag, Leipzig, 1978 | MR | Zbl

[Va] Varopoulos N. Th., “Some remarks on $Q$-algebras”, Ann. Inst. Fourier (Grenoble), 22 (1972), 1–11 | MR | Zbl

[VSh] Videnskii I. V., Shirokov N. A., “Ob odnoi ekstremalnoi zadache v algebre Vinera”, Algebra i analiz, 11:6 (1999), 122–138 | MR

[Vil] Vitse P., “Functional calculus under Kreiss type conditions”, Math. Nachr., 278:15 (2005), 1811–1822 | DOI | MR | Zbl

[Vi2] Vitse P., “Functional calculus under the Tadmor–Ritt condition, and free interpolation by polynomials of a given degree”, J. Funct. Anal., 210 (2004), 43–72 | DOI | MR | Zbl

[Vi3] Vitse P., A Besov algebra functional calculus for Tadmor–Ritt operators, AAA Preprint Series, Univ. Ulm, 2004

[W] Wermer J., Potential theory, Lecture Notes in Math., 408, Springer-Verlag, Berlin–New York, 1974 | MR | Zbl