Approximation by analytic operator functions. Factorizations and very badly approximable functions
Algebra i analiz, Tome 17 (2005) no. 3, pp. 160-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a continuation of our earlier paper [РТЗ]. We consider here operatorvalued functions (or infinite matrix functions) on the unit circle $\mathbb T$ and study the problem of approximation by bounded analytic operator functions. We discuss thematic and canonical factorizations of operator functions and study badly approximable and very badly approximable operator functions. We obtain algebraic and geometric characterizations of badly approximable and very badly approximable operator functions. Note that there is an important difference between the case of finite matrix functions and the case of operator functions. Our criteria for a function to be very badly approximable in the case of finite matrix functions also guarantee that the zero function is the only superoptimal approximant. However in the case of operator functions this is not true.
@article{AA_2005_17_3_a8,
     author = {V. V. Peller and S. R. Treil},
     title = {Approximation by analytic operator functions. {Factorizations} and very badly approximable functions},
     journal = {Algebra i analiz},
     pages = {160--183},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_3_a8/}
}
TY  - JOUR
AU  - V. V. Peller
AU  - S. R. Treil
TI  - Approximation by analytic operator functions. Factorizations and very badly approximable functions
JO  - Algebra i analiz
PY  - 2005
SP  - 160
EP  - 183
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_3_a8/
LA  - en
ID  - AA_2005_17_3_a8
ER  - 
%0 Journal Article
%A V. V. Peller
%A S. R. Treil
%T Approximation by analytic operator functions. Factorizations and very badly approximable functions
%J Algebra i analiz
%D 2005
%P 160-183
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_3_a8/
%G en
%F AA_2005_17_3_a8
V. V. Peller; S. R. Treil. Approximation by analytic operator functions. Factorizations and very badly approximable functions. Algebra i analiz, Tome 17 (2005) no. 3, pp. 160-183. http://geodesic.mathdoc.fr/item/AA_2005_17_3_a8/

[AAK] Adamyan V. M., Arov D. Z., Krein M. G., “O beskonechnykh gankelevykh matritsakh i obobschennykh zadachakh Karateodori–Feiera i F. Rissa”, Funkts. anal. i ego pril., 2:1 (1968), 1–19 | MR | Zbl

[АР] Alexeev R. B., Peller V. V., “Badly approximable matrix functions and canonical factorizations”, Indiana Univ. Math. J., 49 (2000), 1247–1285 | DOI | MR | Zbl

[C] Cambern M., “Analytic range functions”, J. Math. Anal. Appl., 12 (1965), 413–424 | DOI | MR | Zbl

[D] Douglas R. G., Banach algebra techniques in operator theory, Pure Appl. Math., 49, Acad. Press, New York–London, 1972 | MR | Zbl

[H] Helson H., Lectures on invariant subspaces, Acad. Press, New York–London, 1964 | MR | Zbl

[HL] Helson H., Lowdenslager D., “Prediction theory and Fourier series in several variables. II”, Acta Math., 106 (1961), 175–213 | DOI | MR | Zbl

[Kh] Khavinson S. Ya., “O nekotorykh ekstremalnykh zadachakh teorii analiticheskikh funktsii”, Matematika. T. IV, Uchen. zap. Mosk. gos. un-ta, 148, MGU, M., 1951, 133–143

[N] Nikol'skil N. K., Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986 | MR

[Pel] Peller V., “Approximation by analytic operator-valued functions”, Harmonic Analysis and Operator Theory (Caracas, 1994), Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995, 431–448 | MR | Zbl

[Pe2] Peller V. V., Hankel operators and their applications, Springer-Verlag, New York, 2003 | MR

[PT1] Peller V. V., Treil S. R., “Superoptimal singular values and indices of infinite matrix functions”, Indiana Univ. Math. J., 44 (1995), 243–255 | DOI | MR | Zbl

[PT2] Peller V. V., Treil S. R., “Approximation by analytic matrix functions: the four block problem”, J. Fund. Anal., 148 (1997), 191–228 | DOI | MR | Zbl

[PT3] Peller V. V., Treil S. R., “Very badly approximable matrix functions”, Selecta Math., New Ser., 11:1 (2005), 127–154 | DOI | MR | Zbl

[PY1] Peller V. V., Young N. J., “Superoptimal analytic approximations of matrix functions”, J. Funct. Anal., 120 (1994), 300–343 | DOI | MR | Zbl

[PY2] Peller V. V., Young N. J., “Superoptimal singular values and indices of matrix functions”, Integral Equations Operator Theory, 20 (1994), 350–363 | DOI | MR | Zbl

[Po] Poreda S. J., “A characterization of badly approximable functions”, Trans. Amer. Math. Soc., 169 (1972), 249–256 | DOI | MR | Zbl

[T] Treil S. R., “On superoptimal approximation by analytic and meromorphic matrixvalued functions”, J. Funct. Anal., 131 (1995), 386–414 | DOI | MR | Zbl

[V] Vasyunin V. I., “Formula for multiplicity of contractions with finite defect indices”, Toeplitz Operators and Spectral Function Theory, Oper. Theory Adv. Appl., 42, Birkhäuser, Basel, 1989, 281–304 | MR