Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_3_a8, author = {V. V. Peller and S. R. Treil}, title = {Approximation by analytic operator functions. {Factorizations} and very badly approximable functions}, journal = {Algebra i analiz}, pages = {160--183}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_3_a8/} }
TY - JOUR AU - V. V. Peller AU - S. R. Treil TI - Approximation by analytic operator functions. Factorizations and very badly approximable functions JO - Algebra i analiz PY - 2005 SP - 160 EP - 183 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2005_17_3_a8/ LA - en ID - AA_2005_17_3_a8 ER -
V. V. Peller; S. R. Treil. Approximation by analytic operator functions. Factorizations and very badly approximable functions. Algebra i analiz, Tome 17 (2005) no. 3, pp. 160-183. http://geodesic.mathdoc.fr/item/AA_2005_17_3_a8/
[AAK] Adamyan V. M., Arov D. Z., Krein M. G., “O beskonechnykh gankelevykh matritsakh i obobschennykh zadachakh Karateodori–Feiera i F. Rissa”, Funkts. anal. i ego pril., 2:1 (1968), 1–19 | MR | Zbl
[АР] Alexeev R. B., Peller V. V., “Badly approximable matrix functions and canonical factorizations”, Indiana Univ. Math. J., 49 (2000), 1247–1285 | DOI | MR | Zbl
[C] Cambern M., “Analytic range functions”, J. Math. Anal. Appl., 12 (1965), 413–424 | DOI | MR | Zbl
[D] Douglas R. G., Banach algebra techniques in operator theory, Pure Appl. Math., 49, Acad. Press, New York–London, 1972 | MR | Zbl
[H] Helson H., Lectures on invariant subspaces, Acad. Press, New York–London, 1964 | MR | Zbl
[HL] Helson H., Lowdenslager D., “Prediction theory and Fourier series in several variables. II”, Acta Math., 106 (1961), 175–213 | DOI | MR | Zbl
[Kh] Khavinson S. Ya., “O nekotorykh ekstremalnykh zadachakh teorii analiticheskikh funktsii”, Matematika. T. IV, Uchen. zap. Mosk. gos. un-ta, 148, MGU, M., 1951, 133–143
[N] Nikol'skil N. K., Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986 | MR
[Pel] Peller V., “Approximation by analytic operator-valued functions”, Harmonic Analysis and Operator Theory (Caracas, 1994), Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995, 431–448 | MR | Zbl
[Pe2] Peller V. V., Hankel operators and their applications, Springer-Verlag, New York, 2003 | MR
[PT1] Peller V. V., Treil S. R., “Superoptimal singular values and indices of infinite matrix functions”, Indiana Univ. Math. J., 44 (1995), 243–255 | DOI | MR | Zbl
[PT2] Peller V. V., Treil S. R., “Approximation by analytic matrix functions: the four block problem”, J. Fund. Anal., 148 (1997), 191–228 | DOI | MR | Zbl
[PT3] Peller V. V., Treil S. R., “Very badly approximable matrix functions”, Selecta Math., New Ser., 11:1 (2005), 127–154 | DOI | MR | Zbl
[PY1] Peller V. V., Young N. J., “Superoptimal analytic approximations of matrix functions”, J. Funct. Anal., 120 (1994), 300–343 | DOI | MR | Zbl
[PY2] Peller V. V., Young N. J., “Superoptimal singular values and indices of matrix functions”, Integral Equations Operator Theory, 20 (1994), 350–363 | DOI | MR | Zbl
[Po] Poreda S. J., “A characterization of badly approximable functions”, Trans. Amer. Math. Soc., 169 (1972), 249–256 | DOI | MR | Zbl
[T] Treil S. R., “On superoptimal approximation by analytic and meromorphic matrixvalued functions”, J. Funct. Anal., 131 (1995), 386–414 | DOI | MR | Zbl
[V] Vasyunin V. I., “Formula for multiplicity of contractions with finite defect indices”, Toeplitz Operators and Spectral Function Theory, Oper. Theory Adv. Appl., 42, Birkhäuser, Basel, 1989, 281–304 | MR