Open map theorem for metric spaces
Algebra i analiz, Tome 17 (2005) no. 3, pp. 139-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

An open map theorem for metric spaces is proved and some applications are discussed. The result on the existence of gradient flows of semiconcave functions is generalized to a large class of spaces.
Keywords: semi-convex functions, Aleksandrov spaces, differentials, gradient flow.
@article{AA_2005_17_3_a7,
     author = {A. Lytchak},
     title = {Open map theorem for metric spaces},
     journal = {Algebra i analiz},
     pages = {139--159},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_3_a7/}
}
TY  - JOUR
AU  - A. Lytchak
TI  - Open map theorem for metric spaces
JO  - Algebra i analiz
PY  - 2005
SP  - 139
EP  - 159
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_3_a7/
LA  - en
ID  - AA_2005_17_3_a7
ER  - 
%0 Journal Article
%A A. Lytchak
%T Open map theorem for metric spaces
%J Algebra i analiz
%D 2005
%P 139-159
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_3_a7/
%G en
%F AA_2005_17_3_a7
A. Lytchak. Open map theorem for metric spaces. Algebra i analiz, Tome 17 (2005) no. 3, pp. 139-159. http://geodesic.mathdoc.fr/item/AA_2005_17_3_a7/

[BBI01] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. in Math., 33, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[BGP92] Burago Yu., Gromov M., Perelman G., “Prostranstva A. D. Aleksandrova s ogranichennymi snizu kriviznami”, Uspekhi mat. nauk, 47:2 (1992), 3–51 | MR | Zbl

[ВН99] Bridson M., Haefliger A., Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[Fed70] Federer H., Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag New York, Inc., New York, 1969 ; Nauka, M., 1987 | MR | Zbl | Zbl

[Kir94] Kirchheim B., “Rectifiable metric spaces: local structure and regularity of the Hausdorff measure”, Proc. Amer. Math. Soc., 121 (1994), 113–123 | DOI | MR | Zbl

[KM03] Kirchheim B., Magnani V., “A counterexample to metric differentiability”, Proc. Edinb. Math. Soc. (2), 46 (2003), 221–227 | MR | Zbl

[Lyta] Lytchak A., Almost convex subsets, Preprint, 2004 | MR | Zbl

[Lytb] Lytchak A., “Differentiation in metric spaces”, Algebra i analiz, 16:6 (2004), 128–161 | MR

[Nag02] Nagano K., “A volume convergence theorem for Alexandrov spaces with curvature bounded above”, Math. Z., 241 (2002), 127–163 | DOI | MR | Zbl

[Nik95] Nikolaev I., “The tangent cone of an Aleksandrov space of curvature $\le k$”, Manuscripta Math., 86 (1995), 137–147 | DOI | MR | Zbl

[Per94] Perelman G., “Nachala teorii Morsa na prostranstvakh Aleksandrova”, Algebra i analiz, 5:1 (1993), 232–241 | MR

[Pet99] Petrunin A., “Metric minimizing surfaces”, Electron. Res. Announc. Amer. Math. Soc., 5 (1999), 47–54 | DOI | MR | Zbl

[Pla02] Plaut C., “Metric spaces of curvature $\geq k$”, Handbook of Geometric Topology, North-Holland, Amsterdam, 2002, 819–898 | MR

[PP94] Perelman G., Petrunin A., Quasigeodesics and gradient curves in Alexandrov spaces, Preprint, 1994 | MR

[Res93] Reshetnyak Yu. G., “Dvumernye mnogoobraziya ogranichennoi krivizny”, Geometriya – 4. Neregulyarnaya rimanova geometriya, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 70, VINITI, M., 1989, 7–189 | MR

[Sha77] Sharafutdinov V. A., “Teorema Pogorelova–Klingenberga dlya mnogoobrazii, gomeomorfnykh $R^n$”, Sib. mat. zh., 18:4 (1977), 915–925 | MR | Zbl