Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_3_a1, author = {A. G. Bytsko}, title = {On $U_q(sl_2)$-invariant $R$-matrices for senior spins}, journal = {Algebra i analiz}, pages = {24--46}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_3_a1/} }
A. G. Bytsko. On $U_q(sl_2)$-invariant $R$-matrices for senior spins. Algebra i analiz, Tome 17 (2005) no. 3, pp. 24-46. http://geodesic.mathdoc.fr/item/AA_2005_17_3_a1/
[1] Kulish P. P., Reshetikhin N. Yu., “Kvantovaya lineinaya zadacha dlya uravneniya sinus-Gordon i vysshie predstavleniya”, Zap. nauch. semin. LOMI, 101, 1981, 101–110 | MR
[2] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. anal. i ego pril., 16:4 (1982), 27–34 | MR | Zbl
[3] Sklyanin E. K., “Ob odnoi algebre, porozhdaemoi kvadratichnymi sootnosheniyami”, Uspekhi mat. nauk, 40:2(242) (1985), 214
[4] Jimbo M., “A $q$-difference analogue of $U(gl(N+1))$ and the Yang–Baxter equations”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[5] Drinfeld V. G., “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, 283:5 (1985), 1060–1064 | MR
[6] Rosso M., “Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra”, Comm. Math. Phys., 117 (1988), 581–593 | DOI | MR | Zbl
[7] McGuire J. B., “Study of exactly soluble one-dimensional $N$-body problems”, J. Math. Phys., 5 (1964), 622–636 | DOI | MR | Zbl
[8] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1212–1315 | DOI | MR
[9] Kulish P. P., Reshetikhin N. Yu., Sklyanin E. K., “Yang–Baxter equations and representation theory. I”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl
[10] Zamolodchikov A. B., Zamolodchikov Al. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Phys., 120 (1979), 253–291 | DOI | MR
[11] Baxter R. J., “The inversion relation method for some two-dimensional exactly solved models in lattice statistics”, J. Statist. Phys., 28 (1982), 1–41 | DOI | MR
[12] Kennedy T., “Solutions of the Yang–Baxter equation for isotropic quantum spin chains”, J. Phys. A, 25 (1992), 2809–2817 | DOI | MR | Zbl
[13] Jimbo M., “Quantum $R$-matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl
[14] Temperley H. N. V., Lieb E. H., “Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem”, Proc. Roy. Soc. London Ser. A, 322 (1971), 251–280 | DOI | MR | Zbl
[15] Kirillov A. N., Reshetikhin N. Yu., “Representations of the algebra $U_q(su_2)$, $q$-orthogonal polynomials and invariants of links”, Infinite-Dimensional Lie Algebras and Groups (Luminy–Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publishing, Teaneck, NJ, 1989, 289–339 | MR
[16] Nomura M., “Relations for Clebsch–Gordan and Racah coefficients in $su_q(2)$ and Yang–Baxter equations”, J. Math. Phys., 30 (1989), 2397–2405 | DOI | MR | Zbl
[17] Kulish P. P., Sklyanin E. K., “Quantum spectral transform method. Recent developments”, Lecture Notes in Phys., 151, Springer, Berlin–New York, 1982, 61–119 | MR
[18] Faddeev L. D., “How the algebraic Bethe ansatz works for integrable models”, Symetries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 149–219 ; hep-th/9605187 | MR | Zbl
[19] Jones V., “On a certain value of the Kauffman polynomial”, Comm. Math. Phys., 125 (1989), 459–467 | DOI | MR | Zbl
[20] Ma Z. Q., Yang–Baxter equation and quantum enveloping algebras, Adv. Ser. Theoret. Phys. Sci., 1, World Sci. Publishing, River Edge, NJ, 1993 | MR