Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_2_a0, author = {J. E. Brennan}, title = {Thomson's theorem on mean square polynomial approximation}, journal = {Algebra i analiz}, pages = {1--32}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_2_a0/} }
J. E. Brennan. Thomson's theorem on mean square polynomial approximation. Algebra i analiz, Tome 17 (2005) no. 2, pp. 1-32. http://geodesic.mathdoc.fr/item/AA_2005_17_2_a0/
[1] Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996 | MR
[2] Ahlfors L. V., “Bounded analytic functions”, Duke Math. J., 14 (1947), 1–11 | DOI | MR | Zbl
[3] Bram J., “Subnormal operators”, Duke Math. J., 22 (1955), 75–94 | DOI | MR | Zbl
[4] Brennan J. E., “Invariant subspaces and weighted polynomial approximation”, Ark. Mat., 11 (1973), 167–189 | DOI | MR | Zbl
[5] Brennan J. E., “Point evaluations, invariant subspaces and approximation in the mean by polynomials”, J. Funct. Anal., 34 (1979), 407–420 | DOI | MR | Zbl
[6] Brennan J. E., “The Cauchy integral and analytic continuation”, Math. Proc. Cambridge Philos. Soc., 97 (1985), 491–498 | DOI | MR | Zbl
[7] Brown S. W., “Some invariant subspaces for subnormal operators”, Integral Equations Operator Theory, 1 (1978), 310–333 | DOI | MR | Zbl
[8] Carleson L., “Mergelyan's theorem on uniform polynomial approximation”, Math. Scand., 15 (1964), 167–175 | MR | Zbl
[9] Carleson L., “Lars Ahlfors and the Painlevé problem”, In the Tradition of Ahlfors and Bers (Stony Brook, NY, 1998), Contemp. Math., 256, Amer. Math. Soc., Providence, RI, 2000, 5–10 | MR | Zbl
[10] Conway J. B., The Theory of subnormal operators, Math. Surveys Monogr., 36, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[11] Davie A. M., “Analytic capacity and approximation problems”, Trans. Amer. Math. Soc., 171 (1972), 409–444 | DOI | MR | Zbl
[12] Deny J., Lions J. L., “Les espaces du type de Beppo Levi”, Ann. Inst. Fourier (Grenoble), 5 (1953–1954) (1955), 305–370 | MR
[13] Fleming W. H., “Functions whose partial derivatives are measures”, Illinois J. Math., 4 (1960), 452–478 | MR | Zbl
[14] Gamelin T. W., Uniform algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969 | MR | Zbl
[15] Garnett J. B., “Positive length but zero analytic capacity”, Proc. Amer. Math. Soc., 24 (1970), 696–699 | DOI | MR | Zbl
[16] Garnett J. B., Analytic capacity and measure, Lecture Notes in Math., 297, Springer-Verlag, Berlin–New York, 1972 | MR | Zbl
[17] Halmos P. R., “Normal dilations and extensions of operators”, Summa Brasil. Math., 2 (1950), 125–134 | MR | Zbl
[18] Hartogs F., Rosenthal A., “Über Folgen analytischer Funktionen”, Math. Ann., 104 (1931), 606–610 | DOI | MR
[19] Khavinson S. Ya., “O predstavlenii i priblizhenii funktsii na redkikh mnozhestvakh”, Sovremennye problemy teorii analiticheskikh funktsii (Mezhdunar. konf., Erevan, 1965), Nauka, M., 1966, 314–318
[20] Khavinson S. Ya., “Summy Golubeva: teoriya ekstremalnykh zadach tipa zadachi ob analiticheskoi emkosti i soputstvuyuschikh approksimatsionnykh protsessov”, Uspekhi mat. nauk, 54:4(328) (1999), 75–142 | MR | Zbl
[21] Hedberg L. I., “Non-linear potentials and approximation in the mean by analytic functions”, Math. Z., 129 (1972), 299–319 | DOI | MR | Zbl
[22] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR
[23] Khruschev S. V., “Alternativa Brennana dlya mer s konechnoi entropiei”, Izv. AN Arm. SSR, 14:3 (1979), 184–191 | MR
[24] Landkof N. S., Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl
[25] Luecking D. H., “Inequalities on Bergman spaces”, Illinois J. Math., 25 (1981), 1–11 | MR | Zbl
[26] Mateu J., Tolsa X., Verdera J., “On the semiadditivity of analytic capacity and planar Cantor sets”, Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003, 259–278 | MR | Zbl
[27] Mattila P., Mel'nikov M. S., Verdera J., “The Cauchy integral, analytic capacity, and uniform rectifiability”, Ann. of Math. (2), 144 (1996), 127–136 | DOI | MR | Zbl
[28] Mazya V. G., Khavin V. P., “Nelineinaya teoriya potentsiala”, Uspekhi mat. nauk, 27:6(168) (1972), 67–138 | MR
[29] Mazya V. G., Khavin V. P., “Prilozheniya $(p,1)$-emkosti k neskolkim zadacham teorii isklyuchitelnykh mnozhestv”, Mat. sb., 90(132):4 (1973), 558–591
[30] Melnikov M. S., “O dolyakh Glisona algebry $R(X)$”, Mat. sb., 101(143):2(10) (1976), 293–300 | MR
[31] Melnikov M. S., “Analiticheskaya emkost: diskretnyi podkhod i krivizna mery”, Mat. sb., 186:6 (1995), 57–76 | MR
[32] Melnikov M. S., “Saga o probleme Penleve i analiticheskoi emkosti”, Tr. Mat. in-ta RAN, 235, 2001, 157–164 | MR
[33] Melnikov M. S., Sinanyan S. O., “Voprosy teorii priblizhenii funktsii odnogo kompleksnogo peremennogo”, Itogi nauki i tekhn., Sovrem. probl. mat., 4, VINITI, M., 1975, 143–250
[34] Mel'nikov M. S., Verdera J., “A geometric proof of the $L^2$-boundedness of the Cauchy integral on Lipschitz graphs”, Internat. Math. Res. Notices, no. 7 (1995), 325–331 | DOI | MR
[35] Mergelyan S. H., “O polnote sistem analiticheskikh funktsii”, Uspekhi mat. nauk, 8:4 (1953), 3–63 | MR | Zbl
[36] Mergelyan S. N., “Obschii metricheskii kriterii polnoty sistemy polinomov”, Dokl. AN SSSR, 105:5 (1955), 901–904 | MR
[37] Meyers N. G., “A theory of capacities for potentials of functions in Lebesgue classes”, Math. Scand., 26 (1970) (1971), 255–292 | MR
[38] Pajot H., Analytic capacity, rectifiability, Meager curvature and Cauchy integral, Lecture Notes in Math., 1799, Springer-Verlag, Berlin, 2002 | MR | Zbl
[39] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Math. Series, 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR
[40] Thomson J. E., “Invariant subspaces for algebras of subnormal operators”, Proc. Amer. Math. Soc., 96 (1986), 462–464 | DOI | MR | Zbl
[41] Thomson J. E., “Approximation in the mean by polynomials”, Ann. of Math. (2), 133 (1991), 477–507 | DOI | MR | Zbl
[42] Tolsa X., “$L^2$-boundedness of the Cauchy integral operator for continuous measures”, Duke Math. J., 98 (1999), 269–304 | DOI | MR | Zbl
[43] Tolsa X., “On the analytic capacity $\gamma^+$”, Indiana Univ. Math. J., 51 (2002), 317–343 | DOI | MR | Zbl
[44] Tolsa X., “Painleve's problem and the semiadditivity of analytic capacity”, Acta Math., 190 (2003), 105–149 | DOI | MR | Zbl
[45] Verdera J., “$L^2$-boundedness of the Cauchy integral and Menger curvature”, Harmonic Analysis and Boundary Value Problems (Fayetteville, AR, 2000), Contemp. Math., 277, Amer. Math. Soc., Providence, RI, 2001, 139–158 | MR | Zbl
[46] Vitushkin A. G., “Primer mnozhestva polozhitelnoi dliny, no nulevoi analiticheskoi emkosti”, Dokl. AN SSSR, 127:2 (1959), 246–249 | MR | Zbl
[47] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, Uspekhi mat. nauk, 22:6(138) (1967), 141–199 | MR
[48] Wermer J., “Report on subnormal operators”, Report of an International Conference on Operator Theory and Group Representations (Arden House, Harriman, NY, 1955), Publ., 387, Nat. Acad. Sci.-Nat. Res. Council, Washington, DC, 1955, 1–3 | MR
[49] Zalcman L., Analytic capacity and rational approximation, Lecture Notes in Math., 50, Springer-Verlag, Berlin–New York, 1968 | MR
[50] Ziemer W. P., “Extremal length as a capacity”, Michigan Math. J., 17 (1970), 117–128 | DOI | MR | Zbl