Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_1_a7, author = {R. M. Kashaev}, title = {On selfadjont extensions of a~difference operator}, journal = {Algebra i analiz}, pages = {209--223}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_1_a7/} }
R. M. Kashaev. On selfadjont extensions of a~difference operator. Algebra i analiz, Tome 17 (2005) no. 1, pp. 209-223. http://geodesic.mathdoc.fr/item/AA_2005_17_1_a7/
[1] Fok V. V., Chekhov L. O., “Kvantovye prostranstva Teikhmyullera”, Teor. i mat. fiz., 120:3 (1999), 511–528 | MR
[2] Faddeev L. D., “Quantum symmetry in conformal field theory by Hamiltonian methods”, New Symmetry Principles in Quantum Field Theory (Cargese, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, eds. J. Frolich et al., Plenum Press, New York, 1992, 159–175 | MR
[3] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 | DOI | MR | Zbl
[4] Faddeev L. D., Takhtajan L. A., “Liouville model on the lattice”, Field Theory. Quantum Gravity and Strings (Meudon/Paris, 1984/85), Lecture Notes in Phys., 246, Springer, Berlin, 1986, 166–179 | MR
[5] Faddeev L. D., Volkov A. Yu., “Algebraic quantization of integrable models in discrete space-time”, Discrete Integrable Geometry and Physics (Vienna, 1996), Oxford Lecture Ser. Math. Appl., 16, Oxford Univ. Press, New York, 1999, 301–319 ; hep-th/9710039 | MR | Zbl
[6] Fock V. V., Dual Teichmüller spaces, Preprint dg-ga/9702018
[7] Kashaev R. M., “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43 (1998), 105–115 ; q-alg/9705021 | DOI | MR | Zbl
[8] Kashaev R. M., “The quantum dilogarithm and Dehn twists in quantum Teichmüller theory”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 211–221 | MR | Zbl
[9] Teschner J., “Liouville theory revisited”, Classical Quantum Gravity, 18:23 (2001), R153–R222 | DOI | MR | Zbl
[10] Woronowicz S. L., “Quantum exponential function”, Rev. Math. Phys., 12 (2000), 873–920 | DOI | MR | Zbl