On selfadjont extensions of a~difference operator
Algebra i analiz, Tome 17 (2005) no. 1, pp. 209-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2005_17_1_a7,
     author = {R. M. Kashaev},
     title = {On selfadjont extensions of a~difference operator},
     journal = {Algebra i analiz},
     pages = {209--223},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_1_a7/}
}
TY  - JOUR
AU  - R. M. Kashaev
TI  - On selfadjont extensions of a~difference operator
JO  - Algebra i analiz
PY  - 2005
SP  - 209
EP  - 223
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_1_a7/
LA  - ru
ID  - AA_2005_17_1_a7
ER  - 
%0 Journal Article
%A R. M. Kashaev
%T On selfadjont extensions of a~difference operator
%J Algebra i analiz
%D 2005
%P 209-223
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_1_a7/
%G ru
%F AA_2005_17_1_a7
R. M. Kashaev. On selfadjont extensions of a~difference operator. Algebra i analiz, Tome 17 (2005) no. 1, pp. 209-223. http://geodesic.mathdoc.fr/item/AA_2005_17_1_a7/

[1] Fok V. V., Chekhov L. O., “Kvantovye prostranstva Teikhmyullera”, Teor. i mat. fiz., 120:3 (1999), 511–528 | MR

[2] Faddeev L. D., “Quantum symmetry in conformal field theory by Hamiltonian methods”, New Symmetry Principles in Quantum Field Theory (Cargese, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, eds. J. Frolich et al., Plenum Press, New York, 1992, 159–175 | MR

[3] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 | DOI | MR | Zbl

[4] Faddeev L. D., Takhtajan L. A., “Liouville model on the lattice”, Field Theory. Quantum Gravity and Strings (Meudon/Paris, 1984/85), Lecture Notes in Phys., 246, Springer, Berlin, 1986, 166–179 | MR

[5] Faddeev L. D., Volkov A. Yu., “Algebraic quantization of integrable models in discrete space-time”, Discrete Integrable Geometry and Physics (Vienna, 1996), Oxford Lecture Ser. Math. Appl., 16, Oxford Univ. Press, New York, 1999, 301–319 ; hep-th/9710039 | MR | Zbl

[6] Fock V. V., Dual Teichmüller spaces, Preprint dg-ga/9702018

[7] Kashaev R. M., “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43 (1998), 105–115 ; q-alg/9705021 | DOI | MR | Zbl

[8] Kashaev R. M., “The quantum dilogarithm and Dehn twists in quantum Teichmüller theory”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 211–221 | MR | Zbl

[9] Teschner J., “Liouville theory revisited”, Classical Quantum Gravity, 18:23 (2001), R153–R222 | DOI | MR | Zbl

[10] Woronowicz S. L., “Quantum exponential function”, Rev. Math. Phys., 12 (2000), 873–920 | DOI | MR | Zbl