Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_1_a3, author = {H. Boos and M. Jimbo and T. Miwa and F. Smirnov and Y. Takeyama}, title = {A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model}, journal = {Algebra i analiz}, pages = {115--159}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_1_a3/} }
TY - JOUR AU - H. Boos AU - M. Jimbo AU - T. Miwa AU - F. Smirnov AU - Y. Takeyama TI - A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model JO - Algebra i analiz PY - 2005 SP - 115 EP - 159 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2005_17_1_a3/ LA - en ID - AA_2005_17_1_a3 ER -
%0 Journal Article %A H. Boos %A M. Jimbo %A T. Miwa %A F. Smirnov %A Y. Takeyama %T A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model %J Algebra i analiz %D 2005 %P 115-159 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2005_17_1_a3/ %G en %F AA_2005_17_1_a3
H. Boos; M. Jimbo; T. Miwa; F. Smirnov; Y. Takeyama. A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model. Algebra i analiz, Tome 17 (2005) no. 1, pp. 115-159. http://geodesic.mathdoc.fr/item/AA_2005_17_1_a3/
[1] Baxter R., Exactly solved models in statistical mechanics, Acad. Press, Inc., London, 1982 | MR | Zbl
[2] Bazhanov V., Lukyanov S., Zamolodchikov A., “Integrable structure of conformal field theory. II. $Q$-operator and DDV equation”, Comm. Math. Phys., 190 (1997), 247–278 | DOI | MR | Zbl
[3] Bethe H., “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys., 71 (1931), 205 | DOI
[4] Boos H., Korepin V., Quantum spin chains and Riemann zeta functions with odd arguments, ; J. Phys. A, 34 (2001), 5311–5316 hep-th/0104008 | MR | DOI | Zbl
[5] Boos H., Korepin V., Smirnov F., Emptiness formation probability and quantum Knizhnik–Zamolodchikov equation, ; Nuclear Phys. B, 658:3 (2003), 417–439 hep-th/0209246 | MR | DOI | MR | Zbl
[6] Boos H., Korepin V., Smirnov F., New formulae for solutions of quantum Knizhnik–Zamolodchikov equations on level – 4, ; J. Phys. A, 37 (2004), 323–335 hep-th/0304077 | MR | DOI | Zbl
[7] Boos H., Korepin V., Smirnov F., New formulae for solutions of quantum Knizhnik–Zamolodchikov equations on level – 4 and correlation functions, hep-th/0305135 | MR
[8] Boos H., Shiroishi M., Takahashi M., “First principle approach to correlation functions of spin-1/2 Heisenberg chain: fourth-neighbour correlators”, Nucl. Phys. B, 712:3 (2005), 573–599 | DOI | MR | Zbl
[9] Faddeev L., “How algebraic Bethe ansatz works for integrable models”, Symetries Quantiques (Les Houches, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl
[10] Faddeev L. D., Takhtadzhyan L. A., “Spektr i rasseyanie vozbuzhdenii v odnomernom izotropnom magnetike Geizenberga”, Zap. nauch. semin. LOMI, 109, 1981, 134–178 | MR | Zbl
[11] Frenkel I., Reshetikhin N., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl
[12] Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conf. Ser. in Math., 85, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl
[13] Jimbo M., Miwa T., Miki K., Nakayashiki A., “Correlation functions of the $XXZ$ model for $\Delta-1$”, Phys. Lett. A, 168 (1992), 256–263 | DOI | MR
[14] Kato G., Shiroishi M., Takahashi M., Sakai K., “Third-neighbour and other four-point correlation functions of spin-1/2 $XXZ$ chain”, J. Phys. A, 37:19 (2004), 5097–5123 | DOI | MR | Zbl
[15] Kato G., Shiroishi M., Takahashi M., Sakai K., “Next-nearest-neighbour correlation functions of the spin-1/2 $XXZ$ chain at the critical region”, J. Phys. A, 36 (2003), L337–L344 | DOI | MR | Zbl
[16] Kitanine N., Maillet J.-M., Terras V., “Correlation functions of the $XXZ$ Heisenberg spin-1/2-chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582 | DOI | MR | Zbl
[17] Korepin V., Izergin A., Essler F., Uglov D., Correlation function of the spin-1/2 $XXX$ antiferromagnet, ; Phys. Lett. A, 190 (1994), 182–184 cond-mat/9403066 | DOI | MR | Zbl
[18] Kulish P., Reshetikhin N., Sklyanin E., “Yang–Baxter equations and representation theory, I”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl
[19] Sakai K., Shiroishi M., Nishiyama Y., Takahashi M., “Third neighbour correlators of a one-dimensional spin-1/2 Heisenberg antiferromagnet”, Phys. Rev. E, 67 (2003), 065101 | DOI
[20] Smirnov F., Form factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys., 14, World Sci. Publ. Co., Inc., River Edge, NJ, 1992 | MR | Zbl
[21] Smirnov F. A., “Dynamical symmetries of massive integrable models”, Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 813–858 | MR
[22] Takahashi M., “Half-filled Hubbard model at low temperature”, J. Phys. C, 10 (1977), 1298 | DOI
[23] Takahashi M., Kato G., Shiroishi M., “Next nearest-neighbour correlation functions of the spin-1/2 $XXZ$ chain at massive region”, J. Phys. Soc. Japan., 73 (2004), 245 | DOI | Zbl