A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model
Algebra i analiz, Tome 17 (2005) no. 1, pp. 115-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new recursion formula is presented for the correlation functions of the integrable spin $1/2 XXX$ chain with inhomogeneity. It links the correlators involving $n$ consecutive lattice sites to those with $n-1$ and $n-2$ sites. In a series of papers by V. Korepin and two of the present authors, it was discovered that the correlators have a certain specific structure as functions of the inhomogeneity parameters. The formula mentioned above makes it possible to prove this structure directly, as well as to obtain an exact description of the rational functions that were left undetermined in the earlier work.
@article{AA_2005_17_1_a3,
     author = {H. Boos and M. Jimbo and T. Miwa and F. Smirnov and Y. Takeyama},
     title = {A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model},
     journal = {Algebra i analiz},
     pages = {115--159},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_1_a3/}
}
TY  - JOUR
AU  - H. Boos
AU  - M. Jimbo
AU  - T. Miwa
AU  - F. Smirnov
AU  - Y. Takeyama
TI  - A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model
JO  - Algebra i analiz
PY  - 2005
SP  - 115
EP  - 159
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_1_a3/
LA  - en
ID  - AA_2005_17_1_a3
ER  - 
%0 Journal Article
%A H. Boos
%A M. Jimbo
%A T. Miwa
%A F. Smirnov
%A Y. Takeyama
%T A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model
%J Algebra i analiz
%D 2005
%P 115-159
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_1_a3/
%G en
%F AA_2005_17_1_a3
H. Boos; M. Jimbo; T. Miwa; F. Smirnov; Y. Takeyama. A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model. Algebra i analiz, Tome 17 (2005) no. 1, pp. 115-159. http://geodesic.mathdoc.fr/item/AA_2005_17_1_a3/

[1] Baxter R., Exactly solved models in statistical mechanics, Acad. Press, Inc., London, 1982 | MR | Zbl

[2] Bazhanov V., Lukyanov S., Zamolodchikov A., “Integrable structure of conformal field theory. II. $Q$-operator and DDV equation”, Comm. Math. Phys., 190 (1997), 247–278 | DOI | MR | Zbl

[3] Bethe H., “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys., 71 (1931), 205 | DOI

[4] Boos H., Korepin V., Quantum spin chains and Riemann zeta functions with odd arguments, ; J. Phys. A, 34 (2001), 5311–5316 hep-th/0104008 | MR | DOI | Zbl

[5] Boos H., Korepin V., Smirnov F., Emptiness formation probability and quantum Knizhnik–Zamolodchikov equation, ; Nuclear Phys. B, 658:3 (2003), 417–439 hep-th/0209246 | MR | DOI | MR | Zbl

[6] Boos H., Korepin V., Smirnov F., New formulae for solutions of quantum Knizhnik–Zamolodchikov equations on level – 4, ; J. Phys. A, 37 (2004), 323–335 hep-th/0304077 | MR | DOI | Zbl

[7] Boos H., Korepin V., Smirnov F., New formulae for solutions of quantum Knizhnik–Zamolodchikov equations on level – 4 and correlation functions, hep-th/0305135 | MR

[8] Boos H., Shiroishi M., Takahashi M., “First principle approach to correlation functions of spin-1/2 Heisenberg chain: fourth-neighbour correlators”, Nucl. Phys. B, 712:3 (2005), 573–599 | DOI | MR | Zbl

[9] Faddeev L., “How algebraic Bethe ansatz works for integrable models”, Symetries Quantiques (Les Houches, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl

[10] Faddeev L. D., Takhtadzhyan L. A., “Spektr i rasseyanie vozbuzhdenii v odnomernom izotropnom magnetike Geizenberga”, Zap. nauch. semin. LOMI, 109, 1981, 134–178 | MR | Zbl

[11] Frenkel I., Reshetikhin N., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[12] Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conf. Ser. in Math., 85, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl

[13] Jimbo M., Miwa T., Miki K., Nakayashiki A., “Correlation functions of the $XXZ$ model for $\Delta-1$”, Phys. Lett. A, 168 (1992), 256–263 | DOI | MR

[14] Kato G., Shiroishi M., Takahashi M., Sakai K., “Third-neighbour and other four-point correlation functions of spin-1/2 $XXZ$ chain”, J. Phys. A, 37:19 (2004), 5097–5123 | DOI | MR | Zbl

[15] Kato G., Shiroishi M., Takahashi M., Sakai K., “Next-nearest-neighbour correlation functions of the spin-1/2 $XXZ$ chain at the critical region”, J. Phys. A, 36 (2003), L337–L344 | DOI | MR | Zbl

[16] Kitanine N., Maillet J.-M., Terras V., “Correlation functions of the $XXZ$ Heisenberg spin-1/2-chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582 | DOI | MR | Zbl

[17] Korepin V., Izergin A., Essler F., Uglov D., Correlation function of the spin-1/2 $XXX$ antiferromagnet, ; Phys. Lett. A, 190 (1994), 182–184 cond-mat/9403066 | DOI | MR | Zbl

[18] Kulish P., Reshetikhin N., Sklyanin E., “Yang–Baxter equations and representation theory, I”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl

[19] Sakai K., Shiroishi M., Nishiyama Y., Takahashi M., “Third neighbour correlators of a one-dimensional spin-1/2 Heisenberg antiferromagnet”, Phys. Rev. E, 67 (2003), 065101 | DOI

[20] Smirnov F., Form factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys., 14, World Sci. Publ. Co., Inc., River Edge, NJ, 1992 | MR | Zbl

[21] Smirnov F. A., “Dynamical symmetries of massive integrable models”, Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 813–858 | MR

[22] Takahashi M., “Half-filled Hubbard model at low temperature”, J. Phys. C, 10 (1977), 1298 | DOI

[23] Takahashi M., Kato G., Shiroishi M., “Next nearest-neighbour correlation functions of the spin-1/2 $XXZ$ chain at massive region”, J. Phys. Soc. Japan., 73 (2004), 245 | DOI | Zbl