Conjugate algebraic numbers close to a symmetric set
Algebra i analiz, Tome 16 (2004) no. 6, pp. 123-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_6_a3,
     author = {A. Dubickas},
     title = {Conjugate algebraic numbers close to a symmetric set},
     journal = {Algebra i analiz},
     pages = {123--127},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_6_a3/}
}
TY  - JOUR
AU  - A. Dubickas
TI  - Conjugate algebraic numbers close to a symmetric set
JO  - Algebra i analiz
PY  - 2004
SP  - 123
EP  - 127
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_6_a3/
LA  - ru
ID  - AA_2004_16_6_a3
ER  - 
%0 Journal Article
%A A. Dubickas
%T Conjugate algebraic numbers close to a symmetric set
%J Algebra i analiz
%D 2004
%P 123-127
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_6_a3/
%G ru
%F AA_2004_16_6_a3
A. Dubickas. Conjugate algebraic numbers close to a symmetric set. Algebra i analiz, Tome 16 (2004) no. 6, pp. 123-127. http://geodesic.mathdoc.fr/item/AA_2004_16_6_a3/

[1] Dubickas A., “On intervals containing full sets of conjugates of algebraic integers”, Acta Arith., 91 (1999), 379–386 | MR | Zbl

[2] Dubickas A., “The Remak height for units”, Acta Math. Hungar., 97 (2002), 1–13 | DOI | MR | Zbl

[3] Ennola V., “Conjugate algebraic integers in an interval”, Proc. Amer. Math. Soc., 53 (1975), 259–261 | DOI | MR | Zbl

[4] Fekete M., “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 17 (1923), 228–249 | DOI | MR | Zbl

[5] Fekete M., Szegő G., “On algebraic equations with integral coefficients whose roots belong to a given point set”, Math. Z., 63 (1955), 158–172 | DOI | MR | Zbl

[6] Györy K., “On the irreducibility of neighbouring polynomials”, Acta Arith., 67 (1994), 283–294 | MR | Zbl

[7] McKee J., Smyth C. J., “There are Salem numbers of every trace”, Bull. Lond. Math. Soc., 37:1 (2005), 25–36 | DOI | MR | Zbl

[8] Motzkin Th., “From among $n$ conjugate algebraic integers, $n-1$ can be approximately given”, Bull. Amer. Math. Soc., 53 (1947), 156–162 | DOI | MR | Zbl

[9] Narkiewicz W., Elementary and analytic theory of algebraic numbers, Monogr. Mat., 57, PWN, Warsaw, 1974 | MR | Zbl

[10] Robinson R. M., “Intervals containing infinitely many sets of conjugate algebraic integers”, Studies in Mathematical Analysis and Related Topics, Stanford Univ. Press, Stanford, CA, 1962, 305–315 | MR

[11] Robinson R. M., “Intervals containing infinitely many sets of conjugate algebraic units”, Ann. of Math. (2), 80 (1964), 411–428 | DOI | MR | Zbl