Spectral analysis of the generalized surface maryland model
Algebra i analiz, Tome 16 (2004) no. 6, pp. 1-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $d$-dimensional discrete Schrödinger operator whose potential is supported on the subspace $\mathbb Z^{d_2}$ of $\mathbb Z^d$ is considered: $H=H_a+V_M$, where $H_a=H_0+V_a$, $H_0$ is the $d$-dimensional discrete Laplacian, $V_a$ is a constant “surface” potential, $V_a(\mathrm x)=a\delta(x_1)$, $\mathrm x=(x_1,x_2)$, $x_1\in\mathbb Z^{d_1}$, $x_2\in\mathbb Z^{d_2}$, $d_1+d_2=d$ and $V_M(\mathrm x)=g\delta(x_1)\tan\pi(\alpha\cdot x_2+\omega)$ with $\alpha\in\mathbb R^{d_2}$, $\omega\in[0,1)$. It is proved that if the components of $\alpha$ are rationally independent, i.e., the surface potential is quasiperiodic, then the spectrum of $H$ on the interval $[-d,d]$ (coinciding with the spectrum of the discrete Laplacian) is purely absolutely continuous, and the associated generalized eigenfunctions have the form of the sum of the incident wave and waves reflected by the surface potential and propagating into the bulk of $\mathbb Z^d$. If, in addition, $\alpha$ satisfies a certain Diophantine condition, then the remaining part $\mathbb R\setminus[-d,d]$ of the spectrum is pure point, dense, and of multiplicity one, and the associated eigenfunctions decay exponentially in both $x_1$ and $x_2$ (localized surface states). Also, the ase of a rational $\alpha=p/q$ for $d_1=d_2=1$ (i.e., the case of a periodic surface potential) is discussed. In this case the entire spectrum is purely absolutely continuous, and besides the bulk waves there are also surface waves whose amplitude decays exponentially as $|x_1|\to\infty$ but does not decay in $x_2$. The part of the spectrum corresponding to the surface states consists of $q$ separated bands. For large $q$ the bands outside of $[-d,d]$ are exponentially small in $q$, and converge in a natural sense to the pure point spectrum of the quasiperiodic case with Diophantine $\alpha$'s.
@article{AA_2004_16_6_a0,
     author = {F. Bentosela and Ph. Briet and L. Pastur},
     title = {Spectral analysis of the generalized surface maryland model},
     journal = {Algebra i analiz},
     pages = {1--27},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_6_a0/}
}
TY  - JOUR
AU  - F. Bentosela
AU  - Ph. Briet
AU  - L. Pastur
TI  - Spectral analysis of the generalized surface maryland model
JO  - Algebra i analiz
PY  - 2004
SP  - 1
EP  - 27
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_6_a0/
LA  - en
ID  - AA_2004_16_6_a0
ER  - 
%0 Journal Article
%A F. Bentosela
%A Ph. Briet
%A L. Pastur
%T Spectral analysis of the generalized surface maryland model
%J Algebra i analiz
%D 2004
%P 1-27
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_6_a0/
%G en
%F AA_2004_16_6_a0
F. Bentosela; Ph. Briet; L. Pastur. Spectral analysis of the generalized surface maryland model. Algebra i analiz, Tome 16 (2004) no. 6, pp. 1-27. http://geodesic.mathdoc.fr/item/AA_2004_16_6_a0/

[1] Akhiezer H. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, GITTL, M.-L., 1950; vol. 2, F. Ungar, New York, 1963

[2] Bentosela F., Briet Ph., Pastur L., “On the spectral and wave propagation properties of the surface Maryland model”, J. Math. Phys., 44 (2003), 1–35 | DOI | MR | Zbl

[3] Boutet de Monvel A., Surkova A., “Localisation des états de surface pour une classe d'opérateurs de Schrödinger discrets à potentiels de surface quasi-périodiques”, Helv. Phys. Acta, 71 (1998), 459–490 | MR | Zbl

[4] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 ; Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982 | MR | MR

[5] Davies E. B., Simon B., “Scattering theory for systems with different spatial asymptotics on the left and right”, Comm. Math. Phys., 63 (1978), 277–301 | DOI | MR | Zbl

[6] Figotin A. L., Pastur L. A., “An exactly solvable model of a multidimensional incommensurate structure”, Comm. Math. Phys., 95 (1984), 401–425 | DOI | MR | Zbl

[7] Figotin A., Pastur L., Spectra of random and almost-periodic operators, Grundlehren Math. Wiss., 297, Springer-Verlag, Berlin, 1992 | MR | Zbl

[8] Grinshpun V., “Localization for random potentials supported on a subspace”, Lett. Math. Phys., 34 (1995), 103–117 | DOI | MR | Zbl

[9] Grossmann A., Hø{e}gh-Krohn R., Mebkhout M., “The one particle theory of periodic point interactions. Polymers, monomolecular layers, and crystals”, Comm. Math. Phys., 77 (1980), 87–110 | DOI | MR

[10] Jakšić V., Last Y., “Corrugated surfaces and a.c. spectrum”, Rev. Math. Phys., 12 (2000), 1465–1503 | MR | Zbl

[11] Jakšić V., Last Y., “Surface states and spectra”, Comm. Math. Phys., 218 (2001), 459–477 | DOI | MR | Zbl

[12] Jakšić V., Molchanov S., “On the spectrum of the surface Maryland model”, Lett. Math. Phys., 45 (1998), 189–193 | MR

[13] Jakšić V., Molchanov S., “On the surface spectrum in dimension two”, Helv. Phys. Acta, 71 (1998), 629–657 | MR | Zbl

[14] Jakšić V., Molchanov S., “Localization of surface spectra”, Comm. Math. Phys., 208 (1999), 153–172 | DOI | MR | Zbl

[15] Jakšić V., Molchanov S., “Wave operators for the surface Maryland model”, J. Math. Phys., 41 (2000), 4452–4463 | DOI | MR | Zbl

[16] Jakšić V., Molchanov S., Pastur L., “On the propagation properties of surface waves”, Wave Propagation in Complex Media (Minneapolis, MN, 1994), IMA Vol. Math. Appl., 96, Springer, New York, 1998, 143–154 | MR | Zbl

[17] Karpeshina Yu. E., “Spektr i sobstvennye funktsii operatora Shredingera v trekhmernom prostranstve s tochechnym potentsialom tipa odnorodnoi dvumernoi reshetki”, Teor. i mat. fiz., 57:3 (1983), 414–423 | MR

[18] Karpeshina Yu. E., “Teorema razlozheniya po sobstvennym funktsiyam dlya operatora Shredingera s odnorodnoi prostoi dvumernoi reshetkoi potentsialov nulevogo radiusa v trekhmernom prostranstve”, Vestn. Leningr. un-ta. Ser. 1, 1984, no. 1, 11–17 | MR | Zbl

[19] Kato T., Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966 ; Mir, M., 1972 | MR | Zbl | Zbl

[20] Khoruzhenko B., Pastur L., “Localization of surface states: an explicitly solvable model”, Phys. Rep., 288 (1997), 109–125 | DOI

[21] Simon B., “Almost periodic Schrodinger operators. IV. The Maryland model”, Ann. Physics, 159 (1985), 157–183 | DOI | MR | Zbl

[22] Yafaev D., Matematicheskaya teoriya rasseyaniya: Obschaya teoriya, SPbGU, SPb., 1994 ; Amer. Math. Soc., Providence, RI, 1999 | MR