Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2004_16_6_a0, author = {F. Bentosela and Ph. Briet and L. Pastur}, title = {Spectral analysis of the generalized surface maryland model}, journal = {Algebra i analiz}, pages = {1--27}, publisher = {mathdoc}, volume = {16}, number = {6}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2004_16_6_a0/} }
F. Bentosela; Ph. Briet; L. Pastur. Spectral analysis of the generalized surface maryland model. Algebra i analiz, Tome 16 (2004) no. 6, pp. 1-27. http://geodesic.mathdoc.fr/item/AA_2004_16_6_a0/
[1] Akhiezer H. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, GITTL, M.-L., 1950; vol. 2, F. Ungar, New York, 1963
[2] Bentosela F., Briet Ph., Pastur L., “On the spectral and wave propagation properties of the surface Maryland model”, J. Math. Phys., 44 (2003), 1–35 | DOI | MR | Zbl
[3] Boutet de Monvel A., Surkova A., “Localisation des états de surface pour une classe d'opérateurs de Schrödinger discrets à potentiels de surface quasi-périodiques”, Helv. Phys. Acta, 71 (1998), 459–490 | MR | Zbl
[4] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 ; Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982 | MR | MR
[5] Davies E. B., Simon B., “Scattering theory for systems with different spatial asymptotics on the left and right”, Comm. Math. Phys., 63 (1978), 277–301 | DOI | MR | Zbl
[6] Figotin A. L., Pastur L. A., “An exactly solvable model of a multidimensional incommensurate structure”, Comm. Math. Phys., 95 (1984), 401–425 | DOI | MR | Zbl
[7] Figotin A., Pastur L., Spectra of random and almost-periodic operators, Grundlehren Math. Wiss., 297, Springer-Verlag, Berlin, 1992 | MR | Zbl
[8] Grinshpun V., “Localization for random potentials supported on a subspace”, Lett. Math. Phys., 34 (1995), 103–117 | DOI | MR | Zbl
[9] Grossmann A., Hø{e}gh-Krohn R., Mebkhout M., “The one particle theory of periodic point interactions. Polymers, monomolecular layers, and crystals”, Comm. Math. Phys., 77 (1980), 87–110 | DOI | MR
[10] Jakšić V., Last Y., “Corrugated surfaces and a.c. spectrum”, Rev. Math. Phys., 12 (2000), 1465–1503 | MR | Zbl
[11] Jakšić V., Last Y., “Surface states and spectra”, Comm. Math. Phys., 218 (2001), 459–477 | DOI | MR | Zbl
[12] Jakšić V., Molchanov S., “On the spectrum of the surface Maryland model”, Lett. Math. Phys., 45 (1998), 189–193 | MR
[13] Jakšić V., Molchanov S., “On the surface spectrum in dimension two”, Helv. Phys. Acta, 71 (1998), 629–657 | MR | Zbl
[14] Jakšić V., Molchanov S., “Localization of surface spectra”, Comm. Math. Phys., 208 (1999), 153–172 | DOI | MR | Zbl
[15] Jakšić V., Molchanov S., “Wave operators for the surface Maryland model”, J. Math. Phys., 41 (2000), 4452–4463 | DOI | MR | Zbl
[16] Jakšić V., Molchanov S., Pastur L., “On the propagation properties of surface waves”, Wave Propagation in Complex Media (Minneapolis, MN, 1994), IMA Vol. Math. Appl., 96, Springer, New York, 1998, 143–154 | MR | Zbl
[17] Karpeshina Yu. E., “Spektr i sobstvennye funktsii operatora Shredingera v trekhmernom prostranstve s tochechnym potentsialom tipa odnorodnoi dvumernoi reshetki”, Teor. i mat. fiz., 57:3 (1983), 414–423 | MR
[18] Karpeshina Yu. E., “Teorema razlozheniya po sobstvennym funktsiyam dlya operatora Shredingera s odnorodnoi prostoi dvumernoi reshetkoi potentsialov nulevogo radiusa v trekhmernom prostranstve”, Vestn. Leningr. un-ta. Ser. 1, 1984, no. 1, 11–17 | MR | Zbl
[19] Kato T., Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966 ; Mir, M., 1972 | MR | Zbl | Zbl
[20] Khoruzhenko B., Pastur L., “Localization of surface states: an explicitly solvable model”, Phys. Rep., 288 (1997), 109–125 | DOI
[21] Simon B., “Almost periodic Schrodinger operators. IV. The Maryland model”, Ann. Physics, 159 (1985), 157–183 | DOI | MR | Zbl
[22] Yafaev D., Matematicheskaya teoriya rasseyaniya: Obschaya teoriya, SPbGU, SPb., 1994 ; Amer. Math. Soc., Providence, RI, 1999 | MR