The nonexistence of certain tight spherical designs
Algebra i analiz, Tome 16 (2004) no. 4, pp. 1-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the nonexistence of tight spherical designs is shown in some cases left open to the date. Tight spherical 5-designs may exist in dimension $n=(2m+1)^2-2$, and existence is known only for $m=1,2$. In the paper, existence is ruled out under a certain arithmetic condition on the integer $m$, satisfied by infinitely many values of $m$, including $m=4$. Also, nonexistence is shown for $m=3$. Tight spherical 7-designs may exist in dimension $n=3d^2-4$, and existence is known only for $d=2,3$. In the paper, existence is ruled out under a certain arithmetic condition on $d$, satisfied by infinitely many values of $d$, including $d=4$. Also, nonexistence is shown for $d=5$. The fact that the above arithmetic conditions on $m$ for 5-designs and on $d$ for 7-designs are satisfied by infinitely many values of $m$, $d$, respectively, is shown in the appendix written by Y.-F. S. Pétermann.
@article{AA_2004_16_4_a0,
     author = {E. Bannai and A. Munemasa and B. Venkov},
     title = {The nonexistence of certain tight spherical designs},
     journal = {Algebra i analiz},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_4_a0/}
}
TY  - JOUR
AU  - E. Bannai
AU  - A. Munemasa
AU  - B. Venkov
TI  - The nonexistence of certain tight spherical designs
JO  - Algebra i analiz
PY  - 2004
SP  - 1
EP  - 23
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_4_a0/
LA  - en
ID  - AA_2004_16_4_a0
ER  - 
%0 Journal Article
%A E. Bannai
%A A. Munemasa
%A B. Venkov
%T The nonexistence of certain tight spherical designs
%J Algebra i analiz
%D 2004
%P 1-23
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_4_a0/
%G en
%F AA_2004_16_4_a0
E. Bannai; A. Munemasa; B. Venkov. The nonexistence of certain tight spherical designs. Algebra i analiz, Tome 16 (2004) no. 4, pp. 1-23. http://geodesic.mathdoc.fr/item/AA_2004_16_4_a0/

[1] Bannai E., Algebraic combinatorics on spheres, Springer-Verlag, Tokyo, 1999 (Japanese) | MR

[2] Bannai E., Damerell R., “Tight spherical designs. I”, J. Math. Soc. Japan, 31 (1979), 199–207 | DOI | MR | Zbl

[3] Bannai E., Damerell R., “Tight spherical designs. II”, J. London Math. Soc. (2), 21 (1980), 13–30 | DOI | MR | Zbl

[4] Bannai E., Sloane N. J. A., “Uniqueness of certain spherical codes”, Canad. J. Math., 33 (1981), 437–449 | MR

[5] Carlitz L., “On a problem of additive arithmetic. II”, Quart. J. Math. Oxford Ser., 3 (1932), 273–290 | DOI

[6] Conway J. H., Sloane N. J. A., Sphere packing, lattices and groups, 3rd ed., Grundlehren Math. Wiss., 290, Springer-Verlag, New York, 1999 | MR | Zbl

[7] Delsarte P., Goethals J.-M., Seidel J. J., “Spherical codes and designs”, Geom. Dedicata, 6 (1977), 363–388 | MR | Zbl

[8] Goethals J.-M., Seidel J. J., “Spherical designs”, Relations Between Combinatorics and Other Parts of Mathematics, Proc. Sympos. Pure Math. (Ohio State Univ., Columbus, Ohio, 1978), Proc. Sympos. Pure Math., 34, Amer. Math. Soc., Providence, RI, 1979, 255–272 | MR

[9] Goethals J.-M., Seidel J. J., “The regular two-graph on 276 vertices”, Discrete Math., 12 (1975), 143–158 | DOI | MR | Zbl

[10] Heath-Brown D. R., “The square sieve and consecutive square-free numbers”, Math. Ann., 266 (1984), 251–259 | DOI | MR | Zbl

[11] Martinet J., “Sur certains designs sphériques lies à des réseaux entiers”, Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, Monogr. Enseign. Math., 37, Enseign. Math., Gèneve, 2001, 135–146 | MR | Zbl

[12] Milnor J., Husemoller D., Symmetric bilinear forms, Ergeb. Math. Grenzgeb., 73, Springer-Verlag, New York–Heidelberg, 1973 | MR | Zbl

[13] Mirsky L., “On the frequency of pairs of square-free numbers with a given difference.”, Bull. Amer. Math. Soc., 55 (1949), 936–939 | DOI | MR | Zbl

[14] Mirsky L., “Arithmetical pattern problems relating to divisibility by $r$-th powers”, Proc. London. Math. Soc. (2), 50 (1949), 497–508 | DOI | MR | Zbl

[15] Nebe G., Venkov B., “The strongly perfect lattices of dimension 10”, J. Théor. Nombres Bordeaux, 12 (2000), 503–518 | MR | Zbl

[16] Venkov B., “Réseaux et designs sphériques”, Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, Monogr. Enseign. Math., 37, Enseign. Math., Gèneve, 2001, 10–86 | MR | Zbl