Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2004_16_1_a7, author = {I. M. Sigal and F. Ting}, title = {Pinning of magnetic vortices by an external potential}, journal = {Algebra i analiz}, pages = {239--268}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2004_16_1_a7/} }
I. M. Sigal; F. Ting. Pinning of magnetic vortices by an external potential. Algebra i analiz, Tome 16 (2004) no. 1, pp. 239-268. http://geodesic.mathdoc.fr/item/AA_2004_16_1_a7/
[ABC] Ambrosetti A., Badiale M., Cingolani S., “Semiclassical states of nonlinear Schrödinger equations”, Arch. Rational Mech. Anal., 140 (1997), 285–300 | DOI | MR | Zbl
[ABP] Andre N., Bauman P., Phillips D., “Vortex pinning with bounded fields for the Ginzburg–Landau equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:4 (2003), 705–729 | DOI | MR | Zbl
[ASaSe] Aftalion A., Sandier E., Serfaty S., “Pinning phenomena in the Ginzburg–Landau model of superconductivity”, J. Math. Pures Appl. (9), 80:3 (2001), 339–372 | DOI | MR | Zbl
[ВС] Berger M. S., Chen Y. Y., “Symmetric vortices for the Ginzburg–Landau equations of superconductivity, and the nonlinear desingularization phenomenon”, J. Funct. Anal., 82 (1989), 259–295 | DOI | MR | Zbl
[BFGLV] Blatter G., Feigel'man M. V., Geshkenbein V. B. et al., “Vortices in high temperature superconductors”, Rev. Modern Phys., 66:4 (1994), 1125–1388 | DOI | MR
[CR1] Chapman S. J., Richardson G., “Motion of vortices in type-II superconductors”, SIAM J. Appl. Math., 55 (1995), 1275–1296 | DOI | MR | Zbl
[CR2] Chapman S. J., Richardson G., “Vortex pinning by inhomogeneities in type-II superconductors”, Phys. D, 108 (1997), 397–407 | DOI | MR | Zbl
[CR3] Chapman S. J., Richardson G., “Motion and homogenization of vortices in anisotropic type II superconductors”, SIAM J. Appl. Math., 58 (1998), 587–606, electronic | DOI | MR | Zbl
[CDG] Chapman S. J., D. Q., Gunzburger M. D., “A Ginzburg–Landau type model of superconducting/normal junctions including Josephson junctions”, European J. Appl. Math., 6 (1995), 97–114 | DOI | MR | Zbl
[CFKS] Cycon H. L., Froese R. G., Kirsch W., Simon B., Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin, 1987 | MR | Zbl
[DG] Du Q., Gunzburger M. D., “A model for superconducting thin films having variable thickness”, Phys. D, 69 (1993), 215–231 | DOI | MR | Zbl
[DGP] Du Q., Gunzburger M. D., Peterson J. S., “Computational simulations of type II superconductivity including pinning phenomena”, Phys. Rev. B, 51:22 (1995), 16194–16203 | DOI
[FW] Floer A., Weinstein A., “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential”, J. Funct. Anal., 69 (1986), 397–408 | DOI | MR | Zbl
[GT] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, 2nd. ed., Springer-Verlag, Berlin, 1998
[Gul] Gustafson S., Some mathematical problems in the Ginzburg–Landau theory of superconductivity, Ph. D. Thesis, Univ. Toronto, 1999
[Gu2] Gustafson S., “Dynamic stability of magnetic vortices”, Nonlinearity, 15 (2002), 1717–1728 | DOI | MR | Zbl
[GS1] Gustafson S., Sigal I. M., “The stability of magnetic vortices”, Comm. Math. Phys., 212:2 (2000), 257–275 | DOI | MR | Zbl
[GS2] Gustafson S., Sigal I. M., Dynamics of magnetic vortices, Preprint, 2003
[HS] Hislop P. D., Sigal I. M., Introduction to spectral theory, Appl. Math. Sci., 113, Springer-Verlag, New York, 1996 | MR | Zbl
[JMS] Jerrard R., Montero A., Sternberg P., Local minimizers of the Ginzburg–Landau energy with magnetic field in three dimensions, Preprint, 2003 | MR
[JT] Jaffe A., Taubes C., Vortices and monopoles. Structure of static gauge theories, Progr. in Phys., 2, Bikhäuser, Boston, MA, 1980 | MR
[McO] McOwen R. C., Partial differential equations. Methods and applications, Prentice Hall, Upper Saddle River, NJ, 1996 | Zbl
[Oh1] Oh Y.-G., “Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_\alpha$”, Comm. Partial Differential Equations, 13:12 (1988), 1499–1519 | DOI | MR | Zbl
[Oh2] Oh Y.-G., “Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials”, Comm. Math. Phys., 121:1 (1989), 11–33 | DOI | MR | Zbl
[Oh3] Oh Y.-G., “On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential”, Comm. Math. Phys., 131:2 (1990), 223–253 | DOI | MR | Zbl
[P] Plohr B, Ph. D. Thesis, Princeton, 1978
[R] Ritter W. G., Gauge theory: instatons, monopoles, and moduli spaces, Preprint; , 2003 arXiv:math-ph/0304026
[Rivl] Rivière T., “Ginzburg–Landau vortices: the static model”, Séminaire Bourbaki, Vol. 1999/2000, Astérisque, 276, 2002, 73–103 | MR | Zbl
[Riv2] Rivière T., “Towards Jaffe and Taubes conjectures in the strongly repulsive limit”, Manuscripta Math., 108 (2002), 217–273 | DOI | MR | Zbl
[Rubl] Rubenstein J., “On the equilibrium position of Ginzburg–Landau vortices”, Z. Agnew. Math. Phys., 46:5 (1995), 739–751 | DOI | MR
[Rub2] Rubenstein J., “Six lectures on superconductivity”, Boundaries, Interfaces, and Transitions (Banff, AB, 1995), CRM Proc. Lecture Notes, 13, Amer. Math. Soc., Providence, RI, 1998, 163–184 | MR
[RS] Reed M., Simon B., Methods of modern mathematical physics, Vols. I–IV, Academic Press, New York etc., 1972–1979; Mir, M., 1977–1982
[ST] Sigal I. M., Ting F., Stability of pinned vortices, (gotovitsya k pechati)
[Т] Tinkham M., Introduction to superconductivity, McGraw-Hill, New York, 1975