Pinning of magnetic vortices by an external potential
Algebra i analiz, Tome 16 (2004) no. 1, pp. 239-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence and uniqueness of vortex solutions is proved for the Ginzburg–Landau equations with external potentials in $\mathbb R^2$. These equations describe the equilibrium states of superconductors and the stationary states of the $U(1)$-Higgs model of particle physics. In the former case, the external potentials are due to impurities and defects. Without the external potentials, the equations are translationally (as well as gauge) invariant, and they have gauge equivalent families of vortex (equivariant) solutions called magnetic or Abrikosov vortices, centered at arbitrary points of $\mathbb R^2$. For smooth and sufficiently small external potentials, it is shown that for each critical point $z_0$ of the potential, there exists a perturbed vortex solution centered near $z_0$, and that there are no other single vortex solutions. This result confirms the “pinning” phenomena observed and described in physics, whereby magnetic vortices are pinned down to impurities or defects in the superconductor.
Keywords: superconductivity, Ginzburg–Landau equations, pinning, magnetic vortices, external potential, existence.
@article{AA_2004_16_1_a7,
     author = {I. M. Sigal and F. Ting},
     title = {Pinning of magnetic vortices by an external potential},
     journal = {Algebra i analiz},
     pages = {239--268},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_1_a7/}
}
TY  - JOUR
AU  - I. M. Sigal
AU  - F. Ting
TI  - Pinning of magnetic vortices by an external potential
JO  - Algebra i analiz
PY  - 2004
SP  - 239
EP  - 268
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_1_a7/
LA  - en
ID  - AA_2004_16_1_a7
ER  - 
%0 Journal Article
%A I. M. Sigal
%A F. Ting
%T Pinning of magnetic vortices by an external potential
%J Algebra i analiz
%D 2004
%P 239-268
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_1_a7/
%G en
%F AA_2004_16_1_a7
I. M. Sigal; F. Ting. Pinning of magnetic vortices by an external potential. Algebra i analiz, Tome 16 (2004) no. 1, pp. 239-268. http://geodesic.mathdoc.fr/item/AA_2004_16_1_a7/

[ABC] Ambrosetti A., Badiale M., Cingolani S., “Semiclassical states of nonlinear Schrödinger equations”, Arch. Rational Mech. Anal., 140 (1997), 285–300 | DOI | MR | Zbl

[ABP] Andre N., Bauman P., Phillips D., “Vortex pinning with bounded fields for the Ginzburg–Landau equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:4 (2003), 705–729 | DOI | MR | Zbl

[ASaSe] Aftalion A., Sandier E., Serfaty S., “Pinning phenomena in the Ginzburg–Landau model of superconductivity”, J. Math. Pures Appl. (9), 80:3 (2001), 339–372 | DOI | MR | Zbl

[ВС] Berger M. S., Chen Y. Y., “Symmetric vortices for the Ginzburg–Landau equations of superconductivity, and the nonlinear desingularization phenomenon”, J. Funct. Anal., 82 (1989), 259–295 | DOI | MR | Zbl

[BFGLV] Blatter G., Feigel'man M. V., Geshkenbein V. B. et al., “Vortices in high temperature superconductors”, Rev. Modern Phys., 66:4 (1994), 1125–1388 | DOI | MR

[CR1] Chapman S. J., Richardson G., “Motion of vortices in type-II superconductors”, SIAM J. Appl. Math., 55 (1995), 1275–1296 | DOI | MR | Zbl

[CR2] Chapman S. J., Richardson G., “Vortex pinning by inhomogeneities in type-II superconductors”, Phys. D, 108 (1997), 397–407 | DOI | MR | Zbl

[CR3] Chapman S. J., Richardson G., “Motion and homogenization of vortices in anisotropic type II superconductors”, SIAM J. Appl. Math., 58 (1998), 587–606, electronic | DOI | MR | Zbl

[CDG] Chapman S. J., D. Q., Gunzburger M. D., “A Ginzburg–Landau type model of superconducting/normal junctions including Josephson junctions”, European J. Appl. Math., 6 (1995), 97–114 | DOI | MR | Zbl

[CFKS] Cycon H. L., Froese R. G., Kirsch W., Simon B., Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin, 1987 | MR | Zbl

[DG] Du Q., Gunzburger M. D., “A model for superconducting thin films having variable thickness”, Phys. D, 69 (1993), 215–231 | DOI | MR | Zbl

[DGP] Du Q., Gunzburger M. D., Peterson J. S., “Computational simulations of type II superconductivity including pinning phenomena”, Phys. Rev. B, 51:22 (1995), 16194–16203 | DOI

[FW] Floer A., Weinstein A., “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential”, J. Funct. Anal., 69 (1986), 397–408 | DOI | MR | Zbl

[GT] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, 2nd. ed., Springer-Verlag, Berlin, 1998

[Gul] Gustafson S., Some mathematical problems in the Ginzburg–Landau theory of superconductivity, Ph. D. Thesis, Univ. Toronto, 1999

[Gu2] Gustafson S., “Dynamic stability of magnetic vortices”, Nonlinearity, 15 (2002), 1717–1728 | DOI | MR | Zbl

[GS1] Gustafson S., Sigal I. M., “The stability of magnetic vortices”, Comm. Math. Phys., 212:2 (2000), 257–275 | DOI | MR | Zbl

[GS2] Gustafson S., Sigal I. M., Dynamics of magnetic vortices, Preprint, 2003

[HS] Hislop P. D., Sigal I. M., Introduction to spectral theory, Appl. Math. Sci., 113, Springer-Verlag, New York, 1996 | MR | Zbl

[JMS] Jerrard R., Montero A., Sternberg P., Local minimizers of the Ginzburg–Landau energy with magnetic field in three dimensions, Preprint, 2003 | MR

[JT] Jaffe A., Taubes C., Vortices and monopoles. Structure of static gauge theories, Progr. in Phys., 2, Bikhäuser, Boston, MA, 1980 | MR

[McO] McOwen R. C., Partial differential equations. Methods and applications, Prentice Hall, Upper Saddle River, NJ, 1996 | Zbl

[Oh1] Oh Y.-G., “Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_\alpha$”, Comm. Partial Differential Equations, 13:12 (1988), 1499–1519 | DOI | MR | Zbl

[Oh2] Oh Y.-G., “Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials”, Comm. Math. Phys., 121:1 (1989), 11–33 | DOI | MR | Zbl

[Oh3] Oh Y.-G., “On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential”, Comm. Math. Phys., 131:2 (1990), 223–253 | DOI | MR | Zbl

[P] Plohr B, Ph. D. Thesis, Princeton, 1978

[R] Ritter W. G., Gauge theory: instatons, monopoles, and moduli spaces, Preprint; , 2003 arXiv:math-ph/0304026

[Rivl] Rivière T., “Ginzburg–Landau vortices: the static model”, Séminaire Bourbaki, Vol. 1999/2000, Astérisque, 276, 2002, 73–103 | MR | Zbl

[Riv2] Rivière T., “Towards Jaffe and Taubes conjectures in the strongly repulsive limit”, Manuscripta Math., 108 (2002), 217–273 | DOI | MR | Zbl

[Rubl] Rubenstein J., “On the equilibrium position of Ginzburg–Landau vortices”, Z. Agnew. Math. Phys., 46:5 (1995), 739–751 | DOI | MR

[Rub2] Rubenstein J., “Six lectures on superconductivity”, Boundaries, Interfaces, and Transitions (Banff, AB, 1995), CRM Proc. Lecture Notes, 13, Amer. Math. Soc., Providence, RI, 1998, 163–184 | MR

[RS] Reed M., Simon B., Methods of modern mathematical physics, Vols. I–IV, Academic Press, New York etc., 1972–1979; Mir, M., 1977–1982

[ST] Sigal I. M., Ting F., Stability of pinned vortices, (gotovitsya k pechati)

[Т] Tinkham M., Introduction to superconductivity, McGraw-Hill, New York, 1975