Spectral shift function in strong magnetic fields
Algebra i analiz, Tome 16 (2004) no. 1, pp. 207-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the three-dimensional Schrödinger operator $H$ with constant magnetic field of strength $b>0$, and with continuous electric potential $V\in L^1(\mathbb R^3)$ that admits certain power-like estimates at infinity. The asymptotic behavior as $b\to\infty$ of the spectral shift function $\xi(E;H,H_0)$ is studied for the pair of operators $(H,H_0)$ at the energies $\mathcal E=\mathcal{E}b+\lambda$, $\mathcal E>0$ and $\lambda\in\mathbb R$ being fixed. Two asymptotic regimes are distinguished. In the first one, called asymptotics far from the Landau levels, we pick $\mathcal E/2\notin\mathbb Z$ and $\lambda\in\mathbb R$; then the main term is always of order $\sqrt b$, and is independent of $\lambda$. In the second asymptotic regime, called asymptotics near a Landau level, we choose $\mathcal E=2q_0$, $q_o\in\mathbb Z_+$, and $\lambda\ne0$; in this case the leading term of the SSF could be of order $b$ or $\sqrt b$ for different $\lambda$.
@article{AA_2004_16_1_a6,
     author = {V. Bruneau and A. Pushitski and G. Raikov},
     title = {Spectral shift function in strong magnetic fields},
     journal = {Algebra i analiz},
     pages = {207--238},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_1_a6/}
}
TY  - JOUR
AU  - V. Bruneau
AU  - A. Pushitski
AU  - G. Raikov
TI  - Spectral shift function in strong magnetic fields
JO  - Algebra i analiz
PY  - 2004
SP  - 207
EP  - 238
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_1_a6/
LA  - en
ID  - AA_2004_16_1_a6
ER  - 
%0 Journal Article
%A V. Bruneau
%A A. Pushitski
%A G. Raikov
%T Spectral shift function in strong magnetic fields
%J Algebra i analiz
%D 2004
%P 207-238
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_1_a6/
%G en
%F AA_2004_16_1_a6
V. Bruneau; A. Pushitski; G. Raikov. Spectral shift function in strong magnetic fields. Algebra i analiz, Tome 16 (2004) no. 1, pp. 207-238. http://geodesic.mathdoc.fr/item/AA_2004_16_1_a6/

[1] Abramowitz M., Stegun I. (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Nat. Bureau of Standards Appl. Math. Ser., 55, U.S. Government Printing Office, Washington, DC, 1964 | MR

[2] Agmon S., “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:2 (1975), 151–218 | MR | Zbl

[3] Avron J., Herbst I., Simon B., “Schrödinger operators with magnetic fields. I. General interactions”, Duke Math. J., 45 (1978), 847–883 | DOI | MR | Zbl

[4] Avron J., Seiler R., Simon B., “The index of a pair of projections”, J. Funct. Anal., 120:1 (1994), 220–237 | DOI | MR | Zbl

[5] Balazard-Konlein A., Calcul fonctionnel pour des opérateurs $h$-admissibles à symbole opérateur et applications, Thése de Docteur de 3ème cycle, Univ. de Nantes, 1985

[6] Berezin F. A., Shubin M. A., Uravnenie Shrëdingera, MGU, M., 1983 | MR

[7] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Mat. sb., 55(97):2 (1961), 125–174 | MR | Zbl

[8] Birman M. Sh., Entina S. B., “Statsionarnyi podkhod v abstraktnoi teorii rasseyaniya”, Izv. AN SSSR. Ser. mat., 31:2 (1967), 401–430 | MR | Zbl

[9] Birman M. Sh., Krein M. G., “K teorii volnovykh operatorov i operatorov rasseyaniya”, Dokl. AN SSSR, 144:3 (1962), 475–478 | MR | Zbl

[10] Birman M. Sh., Yafaev D. R., “Funktsiya spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44 | MR | Zbl

[11] Buslaev V. S., Faddeev L. D., “O formulakh sledov dlya differentsialnogo singulyarnogo operatora Shturma–Liuvillya”, Dokl. AN SSSR, 132:1 (1960), 13–16 | MR | Zbl

[12] Dimassi M., Sjöstrand J., Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[13] Fock V., “Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld”, Z. Physik, 47 (1928), 446–448 | DOI | Zbl

[14] Gérard C., Laba I., Multiparticle quantum scattering in constant magnetic fields, Math. Surveys Monographs, 90, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[15] Gesztesy F., Makarov K., “The $\Xi$ operator and its relation to Krein's spectral shift function”, J. Anal. Math., 81 (2000), 139–183 | DOI | MR | Zbl

[16] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR

[17] Hupfer T., Leschke H., Warzel S., “Upper bounds on the density of states of single Landau levels broadened by Gaussian random potentials”, J. Math. Phys., 42 (2001), 5626–5641 | DOI | MR | Zbl

[18] Ivrii V., Microlocal analysis and precise spectral asymptotics, Springer Monographs in Math., Springer-Verlag, Berlin, 1998 | MR | Zbl

[19] Krein M. G., “O formule sledov v teorii vozmuschenii”, Mat. sb., 33(75):3 (1953), 597–626 | MR | Zbl

[20] Landau L., “Diamagnetismus der Metalle”, Z. Physik, 64 (1930), 629–637 | DOI | Zbl

[21] Pushnitskii A. B., “Predstavlenie dlya funktsii spektralnogo sdviga v sluchae znakoopredelennykh vozmuschenii”, Algebra i analiz, 9:6 (1997), 197–213 | MR

[22] Pushnitski A., “Estimates for the spectral shift function of the polyharmonic operator”, J. Math. Phys., 40 (1999), 5578–5592 | DOI | MR | Zbl

[23] Pushnitski A., “The spectral shift function and the invariance principle”, J. Funct. Anal., 183 (2001), 269–320 | DOI | MR | Zbl

[24] Raikov G. D., “Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips”, Comm. Partial Differential Equations, 15 (1990), 407–434 ; Errata: Comm. Partial Differential Equations, 18 (1993), 1977–1979 | DOI | MR | Zbl | MR | Zbl

[25] Raikov G. D., “Eigenvalue asymptotics for the Schrödinger operator in strong constant magnetic fields”, Comm. Partial Differential Equations, 23:9–10 (1998), 1583–1619 | MR | Zbl

[26] Raikov G. D., “Asymptotic properties of the magnetic integrated density of states”, Electron. J. Differential Equations, No. 13 (1999), 27 pp | MR

[27] Raikov G. D., Dimassi M., “Spectral asymptotics for quantum Hamiltonlans in strong magnetic fields”, Cubo Mat. Educ., 3 (2001), 317–391 | MR | Zbl

[28] Raikov G. D., Warzel S., “Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials”, Rev. Math. Phys., 14 (2002), 1051–1072 | DOI | MR | Zbl

[29] Reed M., Simon B., Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl

[30] Sobolev A. V., “Efficient bounds for the spectral shift function”, Ann. Inst. H. Poincaré Phys. Théor., 58:1 (1993), 55–83 | MR | Zbl

[31] Yafaev D. P., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, SPbGU, SPb., 1994 | MR