Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2004_16_1_a6, author = {V. Bruneau and A. Pushitski and G. Raikov}, title = {Spectral shift function in strong magnetic fields}, journal = {Algebra i analiz}, pages = {207--238}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2004_16_1_a6/} }
V. Bruneau; A. Pushitski; G. Raikov. Spectral shift function in strong magnetic fields. Algebra i analiz, Tome 16 (2004) no. 1, pp. 207-238. http://geodesic.mathdoc.fr/item/AA_2004_16_1_a6/
[1] Abramowitz M., Stegun I. (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Nat. Bureau of Standards Appl. Math. Ser., 55, U.S. Government Printing Office, Washington, DC, 1964 | MR
[2] Agmon S., “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:2 (1975), 151–218 | MR | Zbl
[3] Avron J., Herbst I., Simon B., “Schrödinger operators with magnetic fields. I. General interactions”, Duke Math. J., 45 (1978), 847–883 | DOI | MR | Zbl
[4] Avron J., Seiler R., Simon B., “The index of a pair of projections”, J. Funct. Anal., 120:1 (1994), 220–237 | DOI | MR | Zbl
[5] Balazard-Konlein A., Calcul fonctionnel pour des opérateurs $h$-admissibles à symbole opérateur et applications, Thése de Docteur de 3ème cycle, Univ. de Nantes, 1985
[6] Berezin F. A., Shubin M. A., Uravnenie Shrëdingera, MGU, M., 1983 | MR
[7] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Mat. sb., 55(97):2 (1961), 125–174 | MR | Zbl
[8] Birman M. Sh., Entina S. B., “Statsionarnyi podkhod v abstraktnoi teorii rasseyaniya”, Izv. AN SSSR. Ser. mat., 31:2 (1967), 401–430 | MR | Zbl
[9] Birman M. Sh., Krein M. G., “K teorii volnovykh operatorov i operatorov rasseyaniya”, Dokl. AN SSSR, 144:3 (1962), 475–478 | MR | Zbl
[10] Birman M. Sh., Yafaev D. R., “Funktsiya spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44 | MR | Zbl
[11] Buslaev V. S., Faddeev L. D., “O formulakh sledov dlya differentsialnogo singulyarnogo operatora Shturma–Liuvillya”, Dokl. AN SSSR, 132:1 (1960), 13–16 | MR | Zbl
[12] Dimassi M., Sjöstrand J., Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[13] Fock V., “Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld”, Z. Physik, 47 (1928), 446–448 | DOI | Zbl
[14] Gérard C., Laba I., Multiparticle quantum scattering in constant magnetic fields, Math. Surveys Monographs, 90, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[15] Gesztesy F., Makarov K., “The $\Xi$ operator and its relation to Krein's spectral shift function”, J. Anal. Math., 81 (2000), 139–183 | DOI | MR | Zbl
[16] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR
[17] Hupfer T., Leschke H., Warzel S., “Upper bounds on the density of states of single Landau levels broadened by Gaussian random potentials”, J. Math. Phys., 42 (2001), 5626–5641 | DOI | MR | Zbl
[18] Ivrii V., Microlocal analysis and precise spectral asymptotics, Springer Monographs in Math., Springer-Verlag, Berlin, 1998 | MR | Zbl
[19] Krein M. G., “O formule sledov v teorii vozmuschenii”, Mat. sb., 33(75):3 (1953), 597–626 | MR | Zbl
[20] Landau L., “Diamagnetismus der Metalle”, Z. Physik, 64 (1930), 629–637 | DOI | Zbl
[21] Pushnitskii A. B., “Predstavlenie dlya funktsii spektralnogo sdviga v sluchae znakoopredelennykh vozmuschenii”, Algebra i analiz, 9:6 (1997), 197–213 | MR
[22] Pushnitski A., “Estimates for the spectral shift function of the polyharmonic operator”, J. Math. Phys., 40 (1999), 5578–5592 | DOI | MR | Zbl
[23] Pushnitski A., “The spectral shift function and the invariance principle”, J. Funct. Anal., 183 (2001), 269–320 | DOI | MR | Zbl
[24] Raikov G. D., “Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips”, Comm. Partial Differential Equations, 15 (1990), 407–434 ; Errata: Comm. Partial Differential Equations, 18 (1993), 1977–1979 | DOI | MR | Zbl | MR | Zbl
[25] Raikov G. D., “Eigenvalue asymptotics for the Schrödinger operator in strong constant magnetic fields”, Comm. Partial Differential Equations, 23:9–10 (1998), 1583–1619 | MR | Zbl
[26] Raikov G. D., “Asymptotic properties of the magnetic integrated density of states”, Electron. J. Differential Equations, No. 13 (1999), 27 pp | MR
[27] Raikov G. D., Dimassi M., “Spectral asymptotics for quantum Hamiltonlans in strong magnetic fields”, Cubo Mat. Educ., 3 (2001), 317–391 | MR | Zbl
[28] Raikov G. D., Warzel S., “Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials”, Rev. Math. Phys., 14 (2002), 1051–1072 | DOI | MR | Zbl
[29] Reed M., Simon B., Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl
[30] Sobolev A. V., “Efficient bounds for the spectral shift function”, Ann. Inst. H. Poincaré Phys. Théor., 58:1 (1993), 55–83 | MR | Zbl
[31] Yafaev D. P., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, SPbGU, SPb., 1994 | MR