Pairs of selfadjoint operators and their invariants
Algebra i analiz, Tome 16 (2004) no. 1, pp. 70-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

A trace formula is proved for pairs of selfadjoint operators that are close to each other in a certain sense. An important role is played by a function analytic in the open upper half-plane and with positive imaginary part there. This function, called the characteristic function of the pair, coincides with Kreĭn's $Q$-function in the case where the selfadjoint operators are canonical extensions of a common simple and closed Hermitian operator. Special emphasis is given to the finite-dimensional case. Relationships with Kreĭn's spectral shift function are also considered. Finally, the case of canonical differential expressions is discussed briefly. In this case, the function $N$ may be chosen to be the Weyl function of the canonical differential expression.
@article{AA_2004_16_1_a3,
     author = {D. Alpay and I. Gohberg},
     title = {Pairs of selfadjoint operators and their invariants},
     journal = {Algebra i analiz},
     pages = {70--120},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_1_a3/}
}
TY  - JOUR
AU  - D. Alpay
AU  - I. Gohberg
TI  - Pairs of selfadjoint operators and their invariants
JO  - Algebra i analiz
PY  - 2004
SP  - 70
EP  - 120
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_1_a3/
LA  - en
ID  - AA_2004_16_1_a3
ER  - 
%0 Journal Article
%A D. Alpay
%A I. Gohberg
%T Pairs of selfadjoint operators and their invariants
%J Algebra i analiz
%D 2004
%P 70-120
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_1_a3/
%G en
%F AA_2004_16_1_a3
D. Alpay; I. Gohberg. Pairs of selfadjoint operators and their invariants. Algebra i analiz, Tome 16 (2004) no. 1, pp. 70-120. http://geodesic.mathdoc.fr/item/AA_2004_16_1_a3/

[1] Alpay D., Dijksma A., Langer H., “Classical Nevanlinna-Pick interpolation with real interpolation points”, Operator Theory and Interpolation (Bloomington, IN, 1996), Oper. Theory Adv. Appl., 115, Birkhauser, Basel, 2000, 1–50 | MR | Zbl

[2] Alpay D., Dym H., “Hilbert spaces of analytic functions, inverse scattering and operator models. I”, Integral Equations Operator Theory, 7 (1984), 589–641 | DOI | MR | Zbl

[3] Alpay D., Gohberg I., “Unitary rational matrix functions”, Topics in Interpolation Theory of Rational Matrix-Valued Functions, Oper. Theory Adv. Appl., 33, Birkhäuser, Basel, 1988, 175–222 | MR

[4] Alpay D., Gohberg I., “Inverse spectral problem for differential operators with rational scattering matrix functions”, J. Differential Equations, 118 (1995), 1–19 | DOI | MR | Zbl

[5] Alpay D., Gohberg I., “Inverse scattering problem for differential operators with rational scattering matrix functions”, Singular Integral Operators and Related Topics (Tel Aviv, 1995), Oper. Theory Adv. Appl., 90, Birkhäuser, Basel, 1996, 1–18 | MR | Zbl

[6] Alpay D., Gohberg I., “A relationship between the Nehari and the Caratheodory–Toeplitz extension problem”, Integral Equations Operator Theory, 26, 1996, 249–272 | MR | Zbl

[7] Alpay D., Gohberg I., “Inverse problems associated to a canonical differential system”, Recent Advances in Operator Theory and Related Topics (Szeged, 1999), Oper. Theory Adv. Appl., 127, Birkhäuser, Basel, 2001, 1–27 | MR | Zbl

[8] Alpay D., Gohberg I., “A trace formula for canonical differential expressions”, J. Funct. Anal., 197 (2003), 489–525 | DOI | MR | Zbl

[9] Alpay D., Gohberg I., Kaashoek M. A., Sakhnovich A. L., “Direct and inverse scattering problem for canonical systems with a strictly pseudo-exponential potential”, Math. Nachr., 215 (2000), 5–31 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] Alpay D., Gohberg I., Sakhnovich L., “Inverse scattering problem for continuous transmission lines with rational reflection coefficient function”, Recent Developments in Operator Theory and its Applications (Winnipeg, MB, 1994), Oper. Theory Adv. Appl., 87, Birkhäuser, Basel, 1996, 1–16 | MR | Zbl

[11] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68 (1950), 337–404 | DOI | MR | Zbl

[12] Aronszajn N., Donoghue W. F., “A supplement to the paper on exponential representations of analytic functions in the upper half-plane with positive imaginary part”, J. Anal. Math., 12 (1964), 113–127 | DOI | MR | Zbl

[13] Aronszajn N., Donoghue W. F., “On exponential representations of analytic functions in the upper halfplane with positive imaginary part”, J. Anal. Math., 5 (1956/1957), 321–388 | DOI

[14] Bart H., Gohberg I., Kaashoek M., Minimal factorization of matrix and operator functions, Oper. Theory Adv. Appl., 1, Birkhäuser, Basel–Boston, MA, 1979 | MR

[15] Belyi S. V., Tsekanovskii E. R., “Realization theorems for operator-valued $R$-functions”, New Results in Operator Theory and its Applications, Oper. Theory Adv. Appl., 98, Birkhäuser, Basel, 1997, 55–91 | MR | Zbl

[16] Belyi S. V., Tsekanovskii E. R., “On classes of realizable operator-valued $R$-functions”, Operator Theory and Interpolation (Bioomington, IN, 1996), Oper. Theory Adv. Appl., 115, Birkhäuser, Basel, 2000, 85–112 | MR | Zbl

[17] Birman M. Sh., Yafaev D. P., “Funktsii spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44 | MR | Zbl

[18] de Branges L., “Perturbations of self-adjoint transformations”, Amer. J. Math., 84 (1962), 543–560 | DOI | MR | Zbl

[19] de Branges L., Espaces Hilbertiens de fonctions entières, Masson, Paris, 1972

[20] de Branges L., Rovnyak J., “Canonical models in quantum scattering theory”, Perturbation Theory and its Applications in Quantum Mechanics (Madison, Wis., 1965), Wiley, New York, 1966, 295–392 | MR

[21] de Branges L., Rovnyak J., Square summable power series, Holt, Rinehart and Winston, New York etc., 1966 | MR | Zbl

[22] Carey R. W., “A unitary invariant for pairs of self-adjoint operators”, J. Reine Angew. Math., 283/284 (1976), 294–312 | MR | Zbl

[23] Dieudonné J., Éléments d'analyse, Tome 2: Chapitres XII à XV, Gauthier-Villars, Paris, 1968 | MR

[24] Donoghue W. F., Monotone matrix functions and analytic continuation, Grundlehren Math. Wiss., 207, Springer-Verlag, New York–Heidelberg, 1974 | MR | Zbl

[25] Dym H., $J$-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, CBMS Regional Conf. Ser. Math., 71, Published for the Conference Board of the Mathematical Sciences, Providence, RI, 1989 | MR

[26] Dym H., Iacob A., “Positive definite extensions, canonical equations and inverse problems”, Topics in Operator Theory Systems and Networks (Rehovot, 1983), Oper. Theory Adv. Appl., 12, Birkhäuser, Basel, 1984, 141–240 | MR

[27] Gesztesy F., Makarov K. A., Naboko S. N., “The spectral shift operator”, Mathematical Results in Quantum Mechanics (Prague, 1998), Oper. Theory Adv. Appl., 108, Birkhäuser, Basel, 1999, 59–90 | MR | Zbl

[28] Gohberg I., Lancaster P., Rodman L., Matrices and indefinite scalar products, Oper. Theory Adv. Appl., 8, Birkhäuser, Basel, 1983 | MR | Zbl

[29] Karow M., “Self-adjoint operators and pairs of Hermitian forms over the quaternions”, Linear Algebra Appl., 299:1–3 (1999), 101–117 | DOI | MR | Zbl

[30] Krein M. G., “Ob ermitovykh operatorakh s defekt-indeksami, ravnymi edinitse. I”, Dokl. AN SSSR, 43 (1944), 339–342 | MR

[31] Krein M. G., “O rezolventakh ermitova operatora s indeksom defekta $(m,m)$”, Dokl. AN SSSR, 52:8 (1946), 657–660 | MR

[32] Krein M. G., Topics in differential and integral equations and operator theory, Oper. Theory Adv. Appl., 7, Birkhäuser Verlag, Basel–Boston, MA, 1983 | MR | Zbl

[33] Krein M. G., “O formule sledov v teorii vozmuschenii”, Mat. sb., 33(75):3 (1953), 597–626 | MR | Zbl

[34] Krein M. G., “Kontinualnye analogi predlozhenii o mnogochlenakh, ortogonalnykh na edinichnoi okruzhnosti”, Dokl. AN SSSR, 105:4 (1955), 637–640 | MR | Zbl

[35] Kreĭn M. G., Langer H., “Über die verallgemeinerten Resolventen und die charakteristische Funktion eines isometrischen Operators im Raume $\pi_k$”, Hilbert Space Operators and Operator Algebras (Proc. Internat. Conf., Tihany, 1970), Colloq. Math. Soc. Janos Bolyai, 5, North-Holland, Amsterdam, 1972, 353–399 | MR

[36] Kreĭn M. G., Langer H., “Über die $Q$-Funktion eines $\pi$-hermiteschen Operators im Raume $\pi_k$”, Acta Sci. Math. (Szeged), 34 (1973), 191–230 | MR | Zbl

[37] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi. Idei i problemy P. L. Chebysheva i A. A. Markova i ikh dalneishee razvitie, Nauka, M., 1973 | MR

[38] Kreĭn M. G., Yavryan V. A., “Spectral shift functions that arise in perturbations of a positive operator”, J. Operator Theory, 6:1 (1981), 155–191 | MR | Zbl

[39] Langer H., Textorius B., “On generalized resolvents and $Q$-functions of symmetric linear relations (subspaces) in Hilbert space”, Pacific J. Math., 72:1 (1977), 135–165 | MR | Zbl

[40] Lifshits I. M., “Ob odnoi zadache teorii vozmuschenii, svyazannoi s kvantovoi statistikoi”, Uspekhi mat. nauk, 7:1(47) (1952), 171–180 | MR | Zbl

[41] Lifshits I. M., “Some problems of the dynamic theory of non-ideal crystal lattices”, Nuovo Cimento, 3, Suppl. 4 (1956), 716–734 | DOI | MR

[42] Saakyan Sh. H., “K teorii rezolvent simmetricheskogo operatora s beskonechnymi defektnymi chislami”, Dokl. AN ArmSSR, 41:4 (1965), 193–198 | Zbl

[43] Saitoh S., Theory of reproducing kernels and its applications, Pitman Res. Notes in Math., 189, Longman Sci. Techn., John Wiley and Sons, Inc., Harlow, New York, 1988 | MR | Zbl

[44] Springer T. A., Steinberg R., “Conjugacy classes”, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), Lecture Notes in Math., 131, Springer, Berlin, 1970, 167–266 | MR