Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2003_15_6_a6, author = {V. P. Spiridonov}, title = {Theta hypergeometric integrals}, journal = {Algebra i analiz}, pages = {161--215}, publisher = {mathdoc}, volume = {15}, number = {6}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2003_15_6_a6/} }
V. P. Spiridonov. Theta hypergeometric integrals. Algebra i analiz, Tome 15 (2003) no. 6, pp. 161-215. http://geodesic.mathdoc.fr/item/AA_2003_15_6_a6/
[AAR] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[As] Askey R., “Beta integrals in Ramanujan's papers, his unpublished work and further examples”, Ramanujan Revisited (Urbana-Champaign, Ill., 1987), Academic Press, Boston, MA, 1988, 561–590 | MR
[AW] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985 | MR
[Ba1] Barnes E. W., “On the theory of the multiple gamma function”, Trans. Cambridge Philos. Soc., 19 (1904), 374–425 | Zbl
[Ba2] Barnes E. W., “The linear difference equation of the first order”, Proc. London Math. Soc. (2), 2 (1905), 438–469 | DOI | MR | Zbl
[Bax] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Physics, 70 (1972), 193–228 | DOI | MR | Zbl
[EMOT] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, Vols. I, II, III, McGraw-Hill Book Co., Inc., New York etc., 1953 ; 1955; Наука, М., 1965 ; 1966; 1967 | MR | Zbl
[D-01] Date E., Jimbo M., Kuniba A., Miwa T., Okado M., “Exactly solvable SOS models: local height probabilities and theta function identities”, Nuclear Phys. B, 290 (1987), 231–273 | DOI | MR | Zbl
[D-02] Date E., Jimbo M., Kuniba A., Miwa T., Okado M., “Exactly solvable SOS models. II. Proof of the star-triangle relation and combinatorial identities”, Conformal Field Theory and Solvable Lattice Models (Kyoto, 1986), Adv. Stud. Pure Math., 16, Academic Press, Boston, MA, 1988, 17–122 | MR
[DG] Denis R. Y., Gustafson R. A., “An $SU(n)$ $q$-beta integral transformation and multiple hypergeometric series identities”, SIAM J. Math. Anal., 23 (1992), 552–561 | DOI | MR | Zbl
[DS1] van Diejen J. F., Spiridonov V. P., “An elliptic Macdonald–Morris conjecture and multiple modular hypergeometric sums”, Math. Res. Lett., 7 (2000), 729–746 | MR | Zbl
[DS2] van Diejen J. F., Spiridonov V. P., “Elliptic Selberg integrals”, Internat. Math. Res. Notices, 20, 2001, 1083–1110 | MR | Zbl
[DS3] van Diejen J. F., Spiridonov V. P., “Modular hypergeometric residue sums of elliptic Selberg integrals”, Lett. Math. Phys., 58 (2001), 223–238 | DOI | MR | Zbl
[DS4] van Diejen J. F., Spiridonov V. P., “Elliptic beta integrals and modular hypergeometric sums: an overview”, Conference on Special Functions (Tempe, AZ, 2000), Rocky Mountain J. Math., 32, 2002, 639–656 | MR | Zbl
[EZ] Eichler M., Zagier D., The theory of Jacobi forms, Progr. Math., 55, Birkhäuser Boston, Inc., Boston, MA, 1985 | MR | Zbl
[F] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 ; “Modular double of a quantum group”, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., 21, Kluwer, Dordrecht, 2000, 149–156 | DOI | MR | Zbl | MR | Zbl
[FV] Felder G., Varchenko A., “The elliptic gamma function and $SL(3,\mathbb Z)\ltimes\mathbb Z^3$”, Adv. Math., 156 (2000), 44–76 | DOI | MR | Zbl
[FT] Frenkel I. B., Turaev V. G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | MR | Zbl
[GR] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia Math. Appl., 35, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[GGR] Gelfand I. M., Graev M. I., Retakh V. S., “Obschie gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, Uspekhi mat. nauk, 47:4(286) (1992), 3–82
[GM] Gupta D. P., Masson D. R., “Contiguous relations, continued fractions and orthogonality”, Trans. Amer. Math. Soc., 350 (1998), 769–808 | DOI | MR | Zbl
[G1] Gustafson R. A., “Some $q$-beta and Metlin-Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23 (1992), 525–551 | DOI | MR | Zbl
[G2] Gustafson R. A., “Some q-beta integrals on $SU(n)$ and $Sp(n)$ that generalize the Askey–Wilson and Nassrallah–Rahman integrals”, SIAM J. Math. Anal., 25 (1994), 441–449 | DOI | MR | Zbl
[GK] Gustafson R. A., Krattenthaler C., “Determinant evaluations and $U(n)$ extensions of Heine's ${}_2\varphi_1$-transformations”, Special Functions, $q$-Series and Related Topics (Toronto, ON, 1955), Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997, 83–89 | MR | Zbl
[GuR] Gustafson R. A., Rakha M. A., “$q$-beta integrals and multivariate basic hypergeometric series associated to root systems of type $A_m$”, Conference on Combinatorics and Physics (Los Alamos, NM, 1998), Ann. Comb., 4, 2000, 347–373 | MR | Zbl
[HBL] Holman W. J., Biedenharn L. C., Louck J. D., “On hypergeometric series well-poised in $SU(n)$”, SIAM J. Math. Anal., 7 (1976), 529–541 | DOI | MR | Zbl
[IM] Ismail M. E. H., Masson D. R., “Generalized orthogonality and continued fractions”, J. Approx. Theory, 83 (1995), 1–40 | DOI | MR | Zbl
[IR] Ismail M. E. H., Rahman M., “The associated Askey–Wilson polynomials”, Trans. Amer. Math. Soc., 328 (1991), 201–237 | DOI | MR | Zbl
[J] Jackson F. H., “The basic gamma-function and the elliptic functions”, Proc. Roy. Soc. London Ser. A, 76 (1905), 127–144 | DOI
[JM] Jimbo M., Miwa T., “Quantum $KZ$ equation with $|q|=1$ and correlation functions of the $XXZ$ model in the gapless regime”, J. Phys. A: Math. Gen., 29 (1996), 2923–2958 | DOI | MR | Zbl
[KLS] Kharchev S., Lebedev D., Semenov-Tian-Shansky M., “Unitary representations of $U_q(sl(2,\mathbb R))$, the modular double and the multiparticle $q$-deformed Toda chains”, Comm. Math. Phys., 225 (2002), 573–609 | DOI | MR | Zbl
[K] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type BC”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | MR | Zbl
[Kr] Krattenthaler C., The major counting of nonintersecting lattice paths and generating functions for tableaux, Mem. Amer. Math. Soc., 115, no. 552, 1995 | MR
[M] Macdonald I. G., “Constant term identities, orthogonal polynomials, and affine Hecke algebras”, Proceedings of the International Congress of Mathematicians, Vol. 1 (Berlin, 1998), Doc. Math., 1998, Extra Vol., 1998, 303–317 | MR | Zbl
[Mil] Milne S. C., “The multidimensional ${}_1\Psi_1$ sum and Macdonald identities for $A_l^{(1)}$”, Theta Functions – Bowdoin 1987 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Part 2, Amer. Math. Soc., Providence, RI, 1989, 323–359 | MR
[Mi2] Milne S. C., “Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions”, Ramanujan J., 6 (2002), 7–149 | DOI | MR | Zbl
[ML] Milne S. C., Lilly G. M., “Consequences of the $A_l$ and $C_l$ Bailey transform and Bailey lemma”, Discrete Math., 139 (1995), 319–346 | DOI | MR | Zbl
[NR] Nassrallah B., Rahman M., “Projection formulas, a reproducing kernel and a generating function for $q$-Wilson polynomials”, SIAM J. Math. Anal., 16 (1985), 186–197 | DOI | MR | Zbl
[NU] Nishizawa M., Ueno K., “Integral solutions of hypergeometric $q$-difference systems with $|q|=1$”, Physics and Combinatorics (Nagoya, 1999), World Sci. Publishing, River Edge, NJ, 2001, 273–286 | MR | Zbl
[R1] Rahman M., “An integral representation of a ${}_{10}\phi_9$ and continuous biorthogonal ${}_{10}\phi_9$ rational functions”, Canad. J. Math., 38 (1986), 605–618 | MR | Zbl
[R2] Rahman M., “Biorthogonality of a system of rational functions with respect to a positive measure on $[-1,1]$”, SIAM J. Math. Anal., 22 (1991), 1430–1441 | DOI | MR | Zbl
[RS1] Rahman M., Suslov S. K., “Classical biorthogonal rational functions”, Methods of Approximation Theory in Complex Analysis and Mathematical Physics (Leningrad, 1991), Lecture Notes in Math., 1550, Springer-Verlag, Berlin, 1993, 131–146 | MR | Zbl
[RS2] Rahman M., Suslov S. K., “The Pearson equation and the beta integrals”, SIAM J. Math. Anal., 25 (1994), 646–693 | DOI | MR | Zbl
[Ro1] Rosengren H., “A proof of a multivariable elliptic summation formula conjectured by Warnaar, $q$-Series with Applications to Combinatorics”, Number Theory, and Physics (Urbana, IL, 2000), Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001, 193–202 | MR | Zbl
[Ro2] Rosengren H., “Elliptic hypergeometric series on root systems”, Adv. Math., 181 (2004), 417–447 | DOI | MR | Zbl
[Ru1] Ruijsenaars S. N. M., “First order analytic difference equations and integrate quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl
[Ru2] Ruijsenaars S. N. M., “A generalized hypergeometric function satisfying four analytic difference equations of Ashey–Wilson type”, Comm. Math. Phys., 206 (1999), 639–690 | DOI | MR | Zbl
[Sc1] Schlosser M., “Summation theorems for multidimensional basic hypergeometric series by determinant evaluations”, Discrete Math., 210 (2000), 151–169 | DOI | MR | Zbl
[S1] Slater L. J., Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl
[S1] Spiridonov V. P., “Solitons and Coulomb plasmas, similarity reductions and special functions”, Special Functions (Hong Kong, China, June 21–25, 1999), World Sci. Publishing, River Edge, NJ, 2000, 324–338 | MR | Zbl
[S2] Spiridonov V. P., “An elliptic beta integral”, Proc. Fifth International Conference on Difference Equations and Applications (Temuco, Chile, January 3–7, 2000), Taylor and Francis, London, 2001, 273–282 | MR
[S3] Spiridonov V. P., “The factorization method, self-simitar potentials and quantum algebras”, Special Functions-2000: Current Perspective and Future Directions (Tempe, USA, May 29–June 9, 2000), Kluwer, Dordrecht, 2001, 335–364 | MR | Zbl
[S4] Spiridonov V. P., “Elliptic beta integrals and special functions of hypergeometric type”, Integrable Structures of Exactly Solvable Two-Dirnensional Models of Quantum Field Theory (Kiev, Ukraine, September 25–30, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer, Dordrecht, 2001, 305–313 | MR | Zbl
[S5] Spiridonov V. P., “Theta hypergeometric series”, Asymptotic Combinatorics with Applications to Mathematical Physics (St. Petersburg, Russia, July 9–23, 2001), Kluwer, Dordrecht, 2002, 307–327 | MR | Zbl
[S6] Spiridonov V. P., “An elliptic incarnation of the Bailey chain”, Internat. Math. Res. Notices, 2002, no. 37, 1945–1977 | MR | Zbl
[S7] Spiridonov V. P., “Modulyarnost i polnaya elliptichnost nekotorykh mnogokratnykh ryadov gipergeometricheskogo tipa”, Teor. i mat. fiz., 135:3 (2003), 462–477 | MR
[SZ1] Spiridonov V. P., Zhedanov A. S., “Spectral transformation chains and some new biorthogonal rational functions”, Comm. Math. Phys., 210 (2000), 49–83 | DOI | MR | Zbl
[SZ2] Spiridonov V. P., Zhedanov A. S., “Classical biorthogonal rational functions on elliptic grids”, C. R. Math. Acad. Sci. Soc. R. Can., 22:270–76 (2000) | MR
[SZ3] Spiridonov V. P., Zhedanov A. S., “Generalized eigenvalue problem and a new family of rational functions biorthogonal on elliptic grids”, Special Functions-2000: Current Perspective and Future Directions (Tempe, USA, May 29–June 9, 2000), Kluwer, Dordrecht, 2001, 365–388 | MR | Zbl
[SZ4] Spiridonov V. P., Zhedanov A. S., “To the theory of biorthogonal rational functions”, RIMS Kokyuroku, 1302 (2003), 172–192 | MR
[TV] Tarasov V., Varchenko A., Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque, 246, 1997, 1–135 | MR | Zbl
[Wa] Warnaar S. O., “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18 (2002), 479–502 | DOI | MR | Zbl
[WW] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[Wi] Wilson J. A., “Orthogonal functions from Gram determinants”, SIAM J. Math. Anal., 22 (1991), 1147–1155 ; Hypergeometric series, recurrence relations and some new orthogonal functions, Ph.D. Thesis, Univ. Wisconsin, Madison, WI, 1978 | DOI | MR | Zbl
[Zh] Zhedanov A. S., “Biorthogonal rational functions and the generalized eigenvalue problem”, J. Approx. Theory, 101 (1999), 303–329 | DOI | MR | Zbl