Some questions of convergence in weak norms
Algebra i analiz, Tome 15 (2003) no. 4, pp. 159-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2003_15_4_a5,
     author = {I. K. Daugavet},
     title = {Some questions of convergence in weak norms},
     journal = {Algebra i analiz},
     pages = {159--176},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_4_a5/}
}
TY  - JOUR
AU  - I. K. Daugavet
TI  - Some questions of convergence in weak norms
JO  - Algebra i analiz
PY  - 2003
SP  - 159
EP  - 176
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_4_a5/
LA  - ru
ID  - AA_2003_15_4_a5
ER  - 
%0 Journal Article
%A I. K. Daugavet
%T Some questions of convergence in weak norms
%J Algebra i analiz
%D 2003
%P 159-176
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_4_a5/
%G ru
%F AA_2003_15_4_a5
I. K. Daugavet. Some questions of convergence in weak norms. Algebra i analiz, Tome 15 (2003) no. 4, pp. 159-176. http://geodesic.mathdoc.fr/item/AA_2003_15_4_a5/

[1] Oganesyan L. A., Rukhovets L. A., “Issledovanie skorosti skhodimosti variatsionno-raznostnykh skhem dlya ellipticheskikh uravnenii vtorogo poryadka v dvumernoi oblasti s gladkoi granitsei”, Zh. vychisl. mat. i mat. fiz., 9:5 (1969), 1102–1120 | Zbl

[2] Wahlbin L. B., Superconvergence in Galerkin finite element methods, Lecture Notes in Math., 1605, Springer-Verlag, Berlin, 1995 | MR | Zbl

[3] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[4] Kharrik I. Yu., “O priblizhenii funktsii, obraschayuschikhsya na granitse oblasti v nul vmeste s chastnymi proizvodnymi, funktsiyami osobogo vida”, Sib. mat. zh., 4:2 (1963), 408–425 | Zbl

[5] Mikhlin S. G., Nekotorye voprosy teorii pogreshnostei, LGU, L., 1988 | MR

[6] Shaposhnikova T. O., “Apriornye otsenki pogreshnosti variatsionnykh metodov v banakhovykh prostranstvakh”, Zh. vychisl. mat. i mat. fiz., 17:5 (1977), 1144–1152 | MR | Zbl

[7] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, LGU, L., 1977 | MR

[8] Daugavet I. K., Priblizhennoe reshenie lineinykh funktsionalnykh uravnenii, LGU, L., 1985

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[10] Daugavet I. K., “O metode momentov dlya obyknovennykh differentsialnykh uravnenii”, Sib. mat. zh., 6:1 (1965), 70–85 | MR | Zbl