Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2003_15_3_a2, author = {F. Gesztesy and K. A. Makarov}, title = {$\mathrm{SL}_2(\mathbb R)$, exponential {Herglotz} representations, and spectral averaging}, journal = {Algebra i analiz}, pages = {104--144}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2003_15_3_a2/} }
TY - JOUR AU - F. Gesztesy AU - K. A. Makarov TI - $\mathrm{SL}_2(\mathbb R)$, exponential Herglotz representations, and spectral averaging JO - Algebra i analiz PY - 2003 SP - 104 EP - 144 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2003_15_3_a2/ LA - ru ID - AA_2003_15_3_a2 ER -
F. Gesztesy; K. A. Makarov. $\mathrm{SL}_2(\mathbb R)$, exponential Herglotz representations, and spectral averaging. Algebra i analiz, Tome 15 (2003) no. 3, pp. 104-144. http://geodesic.mathdoc.fr/item/AA_2003_15_3_a2/
[1] Aleksandrov A. B., “Kratnost granichnykh znachenii vnutrennikh funktsii”, Izv. AN ArmSSR. Mat., 22:5 (1987), 490–503 | MR | Zbl
[2] Aronszajn N., “On a problem of Weyl in the theory of singular Sturm–Liouville equations”, Amer. J. Math., 79 (1957), 597–610 | DOI | MR | Zbl
[3] Aronszajn N., Donoghue W. F., “On exponential representations of analytic functions in the upper half-plane with positive imaginary part”, J. Anal. Math., 5 (1956/57), 321–388 | DOI
[4] Aronszajn N., Donoghue W. F., “A supplement to the paper on exponential representations of analytic functions in the upper half-plane with positive imaginary part”, J. Anal. Math., 12 (1964), 113–127 | DOI | MR | Zbl
[5] Birman M. Sh., Pushnitski A. B., “Spectral shift function, amazing and multifaceted”, Integral Equations Operator Theory, 30 (1998), 191–199 | DOI | MR | Zbl
[6] Birman M. Sh., Solomyak M. Z., “Zamechaniya o funktsii spektralnogo sdviga”, Zap. nauch. semin. LOMI, 27, 1972, 33–46 | MR | Zbl
[7] Buschmann D., Stolz G., “Two-parameter spectral averaging and localization for non-monotonic random Schrödinger operators”, Trans. Amer. Math. Soc., 353 (2001), 635–653 | DOI | MR | Zbl
[8] Carmona R., “One-dimensional Schrodinger operators with random or deterministic potentials: new spectral types”, J. Funct. Anal., 51 (1983), 229–258 | DOI | MR | Zbl
[9] Carmona R., “Absolute continuous spectrum of one-dimensional Schrödinger operators”, Differential Equations (Bermingham, Ala, 1983), North-Holland Math. Stud., 92, eds. I. W. Knowles and R. T. Lewis, North-Holland, Amsterdam–New York, 1984, 77–86 | MR
[10] Carmona R., Lacroix J., Spectral theory of random Schrodinger operators, Birkhäuser Boston, Inc., Boston, MA, 1990 | MR | Zbl
[11] Combes J.-M., Hislop P. D., “Localization for some continuous, random Hamiltonians in $d$-dimensions”, J. Funct. Anal., 124 (1994), 149–180 | DOI | MR | Zbl
[12] Combes J. M., Hislop P. D., Mourre E., “Spectral averaging, perturbation of singular spectra and localization”, Trans. Amer. Math. Soc., 348 (1996), 4883–4894 | DOI | MR | Zbl
[13] Combes J. M., Hislop P. D., Klopp F., Nakamura S., The Wegner estimate and the integrated density of states for some random operators, Preprint, 2001 | MR
[14] Daletskii Yu. L., Krein S. G., “Formuly differentsirovaniya po parametru funktsii ermitovykh operatorov”, Dokl. AN SSSR, 76:1 (1951), 13–16
[15] del Rio R., Fuentes S., Poltoratskiĭ A., “Coexistence of spectra in rank-one perturbation problems”, Bol. Soc. Mat. Mexicana (3), 8:1 (2002), 49–61 | MR | Zbl
[16] del Rio R., Jitomirskaya S., Last Y., Simon B., “Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization”, J. Anal. Math., 69 (1996), 153–200 | DOI | MR | Zbl
[17] del Rio R., Simon B., Stolz G., “Stability of spectral types for Sturm–Liouville operators”, Math. Res. Lett., 1 (1994), 437–450 | MR | Zbl
[18] Delyon F., Lévy Y., Souillard B., “Anderson localization for multidimensional systems of large disorder or large energy”, Comm. Math. Phys., 100 (1985), 463–470 | DOI | MR | Zbl
[19] Delyon F., Lévy Y., Souillard B., “Anderson localization for one- and quasi-one-dimensional systems”, J. Statist. Phys., 41 (1985), 375–388 | DOI | MR
[20] Delyon F., Simon B., Souillard B., “Localization for off-diagonal disorder and for continuous Schrödinger operators”, Comm. Math. Phys., 109 (1987), 157–165 | DOI | MR | Zbl
[21] Donoghue W., Jr., “On the perturbation of spectra”, Comm. Pure Appl. Math., 18 (1965), 559–579 | DOI | MR | Zbl
[22] Gesztesy F., Makarov K. A., Naboko S. N., “The spectral shift operator”, Mathematical Results in Quantum Mechanics (Prague, 1998), Oper. Theory Adv. Appl., 108, eds. J. Dittrich, P. Exner, and M. Tater, Birkhäuser, Basel, 1990, 59–90 | MR
[23] Gesztesy F., Makarov K. A., “Some applications of the spectral shift operator”, Operator Theory and its Applications (Winnipeg, MB, 1998), Fields Inst. Commun., 25, eds. A. G. Ramm, P. N. Shivakumar, and A. V. Strauss, Amer. Math. Soc., Providence, RI, 2000, 267–292 | MR | Zbl
[24] Gesztesy F., Makarov K. A., Motovilov A. K., “Monotonicity and concavity properties of the spectral shift function”, Stochastic Processes, Physics and Geometry: New Interplays, II (Leipzig, 1999), CMS Conf. Proc., 29, eds. F. Gesztesy, H. Holden, J. Jost, S. Paycha, M. Röckner, and S. Scarlatti, Amer. Math. Soc., Providence, RI, 2000, 207–222 | MR | Zbl
[25] Gesztesy F., Makarov K. A., “The $\Sigma$ operator and its relation to Krein's spectral shift function”, J. Anal. Math., 81 (2000), 139–183 | DOI | MR | Zbl
[26] Gesztesy F., Simon B., “Rank-one perturbations at infinite coupling”, J. Funct. Anal., 128 (1995), 245–252 | DOI | MR | Zbl
[27] Gordon A. Ya., “Pure point spectrum under 1-parameter perturbations and instability of Anderson localization”, Comm. Math. Phys., 164 (1994), 489–505 | DOI | MR | Zbl
[28] Gordon A. Ya., “Sobstvennye znacheniya odnomernogo operatora Shredingera, raspolozhennye v ego suschestvennom spektre”, Algebra i analiz, 8:1 (1996), 113–121 | MR
[29] Yavryan V. A., “O regulyarizovannom slede raznosti dvukh singulyarnykh operatorov Shturma–Liuvillya”, Dokl. AN SSSR, 169 (1966), 49–51
[30] Yavryan V. A., “Ob odnoi obratnoi zadache dlya operatorov Shturma–Liuvillya”, Izv. AN ArmSSR. Mat., 6:2–3 (1971), 246–251 | Zbl
[31] Jitomirskaya S., Last Y., “Power-law subordinacy and singular spectra. I. Half-line operators”, Acta Math., 183 (1999), 171–189 | DOI | MR | Zbl
[32] Kiselev A., Last Y., Simon B., “Stability of singular spectral types under decaying perturbations”, J. Funct. Anal., 198 (2003), 1–27 | DOI | MR | Zbl
[33] Kotani S., “Lyapunov exponents and spectra for one-dimensional random Schrödinger operators”, Random Matrices and their Applications (Brunswick, Maine, 1984), Contemp. Math., 50, Amer. Math. Soc., Providence, RI, 1986, 277–286 | MR
[34] Kotani S., Simon B., “Localization in general one-dimensional random systems. II. Continuum Schrödinger operators”, Comm. Math. Phys., 112 (1987), 103–119 | DOI | MR | Zbl
[35] Krein M. G., “Ob ermitovykh operatorakh s defekt-indeksami ravnymi edinitse”, Dokl. AN SSSR, 43:8 (1944), 339–342 | MR
[36] Lang S., $SL_2(R)$, Grad. Texts in Math., 105, Springer-Verlag, New York–Berlin, 1985 ; Mir, M., 1977 | Zbl
[37] Langer H., de Snoo H. S. V., Yavryan V. A., “A relation for the spectral shift function of two self-adjoint extensions”, Recent Advances in Operator Theory and Related Topics (Szeged, 1999), Oper. Theory Adv. Appl., 127, Birkhäuser, Basel, 2001, 437–445 | Zbl
[38] Last Y., “Quantum dynamics and decompositions of singular continuous spectra”, J. Funct. Anal., 142 (1996), 406–445 | DOI | MR | Zbl
[39] Naimark M. A., “O spektralnykh funktsiyakh simmetricheskogo operatora”, Izv. AN SSSR. Ser. mat., 7:6 (1943), 285–296 | Zbl
[40] Pastur L., Figotin A., Spectra of random and almost-periodic operators, Grundlehren Math. Wiss., 297, Springer-Verlag, Berlin, 1992 | MR | Zbl
[41] Rogers C. A., Taylor S. J., “The analysis of additive set functions in Euclidean space”, Acta Math., 101 (1959), 273–302 | DOI | MR | Zbl
[42] Rogers C. A., Taylor S. J., “Additive set functions in Euclidean space. II”, Acta Math., 109 (1963), 207–240 | DOI | MR | Zbl
[43] Simon B., “Localization in general one-dimensional random systems. I. Jacobi matrices”, Comm. Math. Phys., 102 (1985), 327–336 | DOI | MR | Zbl
[44] Simon B., “Spectral analysis of rank one perturbations and applications”, Mathematical Quantum Theory. II. Schrödinger Operators (Vancouver, BC, 1993), CRM Proc. Lecture Notes, 8, Amer. Math. Soc., Providence, RI, 1995, 109–149 | MR | Zbl
[45] Simon B., “Spectral averaging and the Krein spectral sltift”, Proc. Amer. Math. Soc., 126 (1998), 1409–1413 | DOI | MR | Zbl
[46] Simon B., Wolff T., “Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians”, Comm. Pure Appl. Math., 39 (1986), 75–90 | DOI | MR | Zbl
[47] Sims R., Stolz G., “Localization in one dimensional random media: a scattering theoretic approach”, Comm. Math. Phys., 213 (2000), 575–597 | DOI | MR | Zbl
[48] Stolz G., “Localization for random Schrödinger operators with Poisson potential”, Ann. Inst. H. Poincaré Phys. Theor., 63 (1995), 297–314 | MR | Zbl
[49] Yafaev D. R., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, SPbGU, SPb., 1994 | MR