Descrete spectrum of the two-dimensional periodic second order elliptic operator perturbed by a~decaying potential. II.~Internal gaps
Algebra i analiz, Tome 15 (2003) no. 2, pp. 128-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2003_15_2_a2,
     author = {T. A. Suslina},
     title = {Descrete spectrum of the two-dimensional periodic second order elliptic operator perturbed by a~decaying potential. {II.~Internal} gaps},
     journal = {Algebra i analiz},
     pages = {128--189},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_2_a2/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Descrete spectrum of the two-dimensional periodic second order elliptic operator perturbed by a~decaying potential. II.~Internal gaps
JO  - Algebra i analiz
PY  - 2003
SP  - 128
EP  - 189
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_2_a2/
LA  - ru
ID  - AA_2003_15_2_a2
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Descrete spectrum of the two-dimensional periodic second order elliptic operator perturbed by a~decaying potential. II.~Internal gaps
%J Algebra i analiz
%D 2003
%P 128-189
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_2_a2/
%G ru
%F AA_2003_15_2_a2
T. A. Suslina. Descrete spectrum of the two-dimensional periodic second order elliptic operator perturbed by a~decaying potential. II.~Internal gaps. Algebra i analiz, Tome 15 (2003) no. 2, pp. 128-189. http://geodesic.mathdoc.fr/item/AA_2003_15_2_a2/

[В1] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Mat. sb., 55(97):2 (1961), 125–174 | MR | Zbl

[В2] Birman M. Sh., “Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant”, Estimates and Asymptotics for Discrete Spectra of Integral and Differential Equations, Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 57–73 | MR

[B3] Birman M. Sh., “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations”, Boundary Value Problems, Schrödinger Operators, Deformation Quantization, Math. Top., 8, Akademie Verlag, Berlin, 1995, 334–352 | MR | Zbl

[B4] Birman M. Sh., “Diskretnyi spektr periodicheskogo operatora Shredingera, vozmuschennogo ubyvayuschim potentsialom”, Algebra i analiz, 8:1 (1996), 3–20 | MR

[В5] Birman M. Sh., “Diskretnyi spektr v lakunakh vozmuschennogo periodicheskogo operatora Shredingera. II. Neregulyarnye vozmuscheniya”, Algebra i analiz, 9:6 (1997), 62–89 | MR | Zbl

[BL] Birman M. Sh., Laptev A., “The negative discrete spectrum of a two-dimensional Schrödinger operator”, Comm. Pure Appl. Math., 49 (1996), 967–997 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[BLSu] Birman M. Sh., Laptev A., Suslina T. A., “Diskretnyi spektr dvumernogo periodicheskogo ellipticheskogo operatora vtorogo poryadka, vozmuschennogo ubyvayuschim potentsialom. I. Polubeskonechnaya lakuna”, Algebra i analiz, 12:4 (2000), 36–78 | MR

[BS1] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 ; D. Reidel Publishing Co., Dordrecht, 1987 | MR

[BS2] Birman M. Sh., Solomyak M. Z., “Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations”, Estimates and Asymptotics for Discrete Spectra of Integral and Differential Equations, Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 1–55 | MR

[BS3] Birman M. Sh., Solomyak M. Z., “On the negative discrete spectrum of a periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential”, J. Anal. Math., 83 (2001), 337–391 | DOI | MR | Zbl

[GoKr] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[Не] Helffer B., Around Floquet eigenvalues, Preprint, Mittag-Leffler Inst., 2002

[Iv] Ivrii V., “Accurate spectral asymptotics for periodic operators”, Journées Équations aux Dérivées Partielles, 1999, Exp. No 5, 11 pp. | MR

[S] Solomyak M. Z., “Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, $2l=d$, and applications to the spectral theory of the Schrödinger operator”, Israel J. Math., 86 (1994), 253–275 | DOI | MR | Zbl

[Su] Suslina T. A., On discrete spectrum in the gaps of a two-dimensional periodic elliptic operator perturbed by a decaying potential, Preprint, Mittag-Leffler Inst., 2002 ; Contemp. Math. (to appear) | MR