Uniqueness theorem and singular spectrum in the Friedrichs model near a~singular point
Algebra i analiz, Tome 15 (2003) no. 1, pp. 215-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2003_15_1_a7,
     author = {S. Yakovlev},
     title = {Uniqueness theorem and singular spectrum in the {Friedrichs} model near a~singular point},
     journal = {Algebra i analiz},
     pages = {215--239},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_1_a7/}
}
TY  - JOUR
AU  - S. Yakovlev
TI  - Uniqueness theorem and singular spectrum in the Friedrichs model near a~singular point
JO  - Algebra i analiz
PY  - 2003
SP  - 215
EP  - 239
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_1_a7/
LA  - ru
ID  - AA_2003_15_1_a7
ER  - 
%0 Journal Article
%A S. Yakovlev
%T Uniqueness theorem and singular spectrum in the Friedrichs model near a~singular point
%J Algebra i analiz
%D 2003
%P 215-239
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_1_a7/
%G ru
%F AA_2003_15_1_a7
S. Yakovlev. Uniqueness theorem and singular spectrum in the Friedrichs model near a~singular point. Algebra i analiz, Tome 15 (2003) no. 1, pp. 215-239. http://geodesic.mathdoc.fr/item/AA_2003_15_1_a7/

[1] Faddeev L. D., “O modeli Fridrikhsa v teorii vozmuschenii nepreryvnogo spektra”, Tr. Mat. in-ta AN SSSR, 73, 1964, 292–313 | MR | Zbl

[2] Pavlov B. S., Petras S. V., “O singulyarnom spektre slabo vozmuschennogo operatora umnozheniya”, Funkts. anal. i ego pril., 4:2 (1970), 54–61 | MR | Zbl

[3] Naboko S. N., “Teoremy edinstvennosti dlya operator-funktsii s polozhitelnoi mnimoi chastyu i singulyarnyi spektr v samosopryazhennoi modeli Fridrikhsa”, Dokl. AN SSSR, 275:6 (1984), 1310–1313 | MR | Zbl

[4] Naboko S. N., “Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedriclis model”, Ark. Mat., 25:1 (1987), 115–140 | DOI | MR | Zbl

[5] Mikityuk Ya. V., “O singulyarnom spektre samosopryazhennykh operatorov”, Dokl. AN SSSR, 303:1 (1988), 33–36 | MR

[6] Yakovlev S. I., “O vozmuscheniyakh singulyarnogo spektra v samosopryazhennoi lyudeli Fridrikhsa”, Vestn. Leningr. un-ta. Ser. mat. mekh. astronom., 1990, no. 1, 116–117 | MR

[7] Naboko S. N., Yakovlev S. I., “Ob usloviyakh konechnosti singulyarnogo spektra v samosopryazhennoi modeli Fridrikhsa”, Funkts. anal. i ego pril., 24:4 (1990), 88–89 | MR | Zbl

[8] Yakovlev S. I., O strukture singulyarnogo spektra v samosopryazhennoi modeli Fridrikhsa, rukopis dep. v VINITI No 2050-V ot 17.05.91, L., 1991

[9] Dynkin E. M., Naboko S. N., Yakovlev S. I., “Granitsa konechnosti singulyarnogo spektra v samosopryazhennoi modeli Fridrikhsa”, Algebra i analiz, 3:2 (1991), 77–90 | MR

[10] Yakovlev S. I., “Granitsa konechnosti singulyarnogo spektra v okrestnosti osoboi tochki operatorov modeli Fridrikhsa”, Algebra i analiz, 10:4 (1998), 210–237 | MR

[11] Yakovlev S. I., “O singulyarnom spektre operatorov modeli Fridrikhsa v okrestnosti osoboi tochki”, Funkts. anal. i ego pril., 32:3 (1998), 91–94 | MR | Zbl

[12] Beurling A., “Ensembles exceptionnels”, Acta Math., 72 (1940), 1–13 | DOI | MR

[13] Carleson L., “Sets of uniqueness for junctions regular in the unit circle”, Acta Math., 87 (1952), 325–345 | DOI | MR | Zbl

[14] Hunt R., Muckenhoupt B., Wheeden R., “Weighted norm inequalities for the conjugate function and Hubert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl

[15] Kusis P., Vvedenie v teoriyu prostranstv $H^p$ s prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR

[16] Pavlov B. S., “Teorema edinstvennosti dlya funktsii s polozhitelnoi mnimoi chastyu”, Spektralnaya teoriya. Volnovye protsessy, Probl. mat. fiz., 4, LGU, L., 1970, 118–124