Backward uniqueness for the heat operator in half-space
Algebra i analiz, Tome 15 (2003) no. 1, pp. 201-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

A backward uniqueness result is proved for the heat operator with variable lower order terms in a half-space. The main point of the result is that the boundary conditions are not controlled by the assumptions.
@article{AA_2003_15_1_a6,
     author = {L. Escauriaza and G. Seregin and V. \v{S}verak},
     title = {Backward uniqueness for the heat operator in half-space},
     journal = {Algebra i analiz},
     pages = {201--214},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_1_a6/}
}
TY  - JOUR
AU  - L. Escauriaza
AU  - G. Seregin
AU  - V. Šverak
TI  - Backward uniqueness for the heat operator in half-space
JO  - Algebra i analiz
PY  - 2003
SP  - 201
EP  - 214
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_1_a6/
LA  - en
ID  - AA_2003_15_1_a6
ER  - 
%0 Journal Article
%A L. Escauriaza
%A G. Seregin
%A V. Šverak
%T Backward uniqueness for the heat operator in half-space
%J Algebra i analiz
%D 2003
%P 201-214
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_1_a6/
%G en
%F AA_2003_15_1_a6
L. Escauriaza; G. Seregin; V. Šverak. Backward uniqueness for the heat operator in half-space. Algebra i analiz, Tome 15 (2003) no. 1, pp. 201-214. http://geodesic.mathdoc.fr/item/AA_2003_15_1_a6/

[1] Escauriaza L., “Carleman inequalities and the heat operator”, Duke Math. J., 104:1 (2000), 113–127 | DOI | MR | Zbl

[2] Escauriaza L., Fernandez F. J., “Unique continuation for parabolic operators”, Ark. Mat., 41:1 (2003), 35–60 | DOI | MR | Zbl

[3] Escauriaza L., Seregin G., Šverák V., “On backward uniqueness for parabolic equations”, Zap. nauch. semin. POMI, 288, 2002, 100–103 | MR | Zbl

[4] Escauriaza L., Seregin G., Šverák V., “On backward uniqueness for parabolic equations”, Arch. Rational Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl

[5] Escauriaza L., Vega L., “Carleman inequalities and the heat operator. II”, Indiana Univ. Math. J., 50 (2001), 1149–1169 | DOI | MR | Zbl

[6] Hörmander L., Linear partial differential operators, Grundlehren Math. Wiss., 116, Springer-Verlag, Berlin etc., 1963 | MR | Zbl

[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[8] Micu S., Zuazua E., “On the lack of null-controllability of the heat equation on the half space”, Port. Math. (N.S.), 58:1 (2001), 1–24 | MR | Zbl

[9] Seregin G., “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[10] Seregin G., Šverák V., “Tire Navier–Stokes equations and backward uniqueness”, Nonlinear problems of mathematical physics and related topics 2, In honor of Prof. O. A. Ladyzhenskaya, Kluwer Acad. Publ., New York, 2002, 353–366 | MR | Zbl

[11] Tataru D., Carleman estimates, unique continuation, and applications, notes downloadable from, http://math.berkeley.edu/~tataru/ucp.html