Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2003_15_1_a6, author = {L. Escauriaza and G. Seregin and V. \v{S}verak}, title = {Backward uniqueness for the heat operator in half-space}, journal = {Algebra i analiz}, pages = {201--214}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2003_15_1_a6/} }
L. Escauriaza; G. Seregin; V. Šverak. Backward uniqueness for the heat operator in half-space. Algebra i analiz, Tome 15 (2003) no. 1, pp. 201-214. http://geodesic.mathdoc.fr/item/AA_2003_15_1_a6/
[1] Escauriaza L., “Carleman inequalities and the heat operator”, Duke Math. J., 104:1 (2000), 113–127 | DOI | MR | Zbl
[2] Escauriaza L., Fernandez F. J., “Unique continuation for parabolic operators”, Ark. Mat., 41:1 (2003), 35–60 | DOI | MR | Zbl
[3] Escauriaza L., Seregin G., Šverák V., “On backward uniqueness for parabolic equations”, Zap. nauch. semin. POMI, 288, 2002, 100–103 | MR | Zbl
[4] Escauriaza L., Seregin G., Šverák V., “On backward uniqueness for parabolic equations”, Arch. Rational Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl
[5] Escauriaza L., Vega L., “Carleman inequalities and the heat operator. II”, Indiana Univ. Math. J., 50 (2001), 1149–1169 | DOI | MR | Zbl
[6] Hörmander L., Linear partial differential operators, Grundlehren Math. Wiss., 116, Springer-Verlag, Berlin etc., 1963 | MR | Zbl
[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[8] Micu S., Zuazua E., “On the lack of null-controllability of the heat equation on the half space”, Port. Math. (N.S.), 58:1 (2001), 1–24 | MR | Zbl
[9] Seregin G., “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl
[10] Seregin G., Šverák V., “Tire Navier–Stokes equations and backward uniqueness”, Nonlinear problems of mathematical physics and related topics 2, In honor of Prof. O. A. Ladyzhenskaya, Kluwer Acad. Publ., New York, 2002, 353–366 | MR | Zbl
[11] Tataru D., Carleman estimates, unique continuation, and applications, notes downloadable from, http://math.berkeley.edu/~tataru/ucp.html