Limiting distributions of theta series on Siegel half-spaces
Algebra i analiz, Tome 15 (2003) no. 1, pp. 118-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m>1$ be an integer. For any $Z$ from the Siegel upper half-space we consider the multivariate theta series $$ \Theta(Z)=\sum_{\bar n\in\mathbb Z^m}\exp(\pi i^t\bar n Z\bar n). $$ The function $\Theta$ is invariant with respect to every substitution $Z\longmapsto Z+P$, where $P$ is a real symmetric matrix with integral entries and even diagonal. Therefore, for any real matrix $Y>0$ the function $\Theta_Y(\cdot)=(\det Y)^{1/4}\Theta(\cdot+iY)$ may be viewed as a complex-valued random variable on the torus $\mathbb T^{m(m+1)/2}$ with the probability Haar measure. We prove that there exists a weak limit of the distribution of $\Theta_{\tau Y}$ as $\tau\to0$, and this limit does not depend on the choice of $Y$. This theorem is an extension of known results for $m=1$ to higher dimension. We also establish the rotational invariance of the limiting distribution. The proof of the main theorem makes use of Dani–Margulis' and Ratner's results on dynamics of unipotent flows.
Keywords: theta series, Siegel's half-space, convergence in distribution, closed horospheres, unipotent flows.
@article{AA_2003_15_1_a3,
     author = {F. G\"otze and M. Gordin},
     title = {Limiting distributions of theta series on {Siegel} half-spaces},
     journal = {Algebra i analiz},
     pages = {118--147},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_1_a3/}
}
TY  - JOUR
AU  - F. Götze
AU  - M. Gordin
TI  - Limiting distributions of theta series on Siegel half-spaces
JO  - Algebra i analiz
PY  - 2003
SP  - 118
EP  - 147
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_1_a3/
LA  - en
ID  - AA_2003_15_1_a3
ER  - 
%0 Journal Article
%A F. Götze
%A M. Gordin
%T Limiting distributions of theta series on Siegel half-spaces
%J Algebra i analiz
%D 2003
%P 118-147
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_1_a3/
%G en
%F AA_2003_15_1_a3
F. Götze; M. Gordin. Limiting distributions of theta series on Siegel half-spaces. Algebra i analiz, Tome 15 (2003) no. 1, pp. 118-147. http://geodesic.mathdoc.fr/item/AA_2003_15_1_a3/

[Ar] Arnold V. I., “Neskolko zamechanii o potokakh lineinykh elementov i reperov”, Dokl. AN SSSR, 138:2 (1961), 255–257 | MR

[Da] Dani S. G., “Orbits of horospherical flows”, Duke Math. J., 53:1 (1986), 177–188 | DOI | MR | Zbl

[DM] Dani S. G., Margulis G. A., “Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel'fand Seminar”, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993, 91–137 | MR | Zbl

[EMM] Eskin A., McMullen C., “Mixing, counting, and equidistribution in Lie groups”, Duke Math. J., 71:1 (1993), 181–209 | DOI | MR | Zbl

[FJK] Fiedler H., Jurkat W., Körner O., “Asymptotic expansions of finite theta series”, Acta Arith., 32:2 (1977), 129–146 | MR | Zbl

[Ig] Igusa J., “On the graded ring of theta-constants. II”, Amer. J. Math., 88 (1966), 221–236 | DOI | MR | Zbl

[HL1] Hardy G. H., Littlewood J. E., “Some problems of Diophantine approximation. II”, Acta Math., 37 (1914), 193–239 | DOI | MR | Zbl

[HL2] Hardy G. H., Littlewood J. E., “A further note on the trigonometrical series associated with the elliptic theta-functions”, Proc. Cambridge Philos. Soc., 21 (1922), 1–5

[JVH1] Jurkat W. B., Van Home J. W., “The proof of the central limit theorem for theta sums”, Duke Math. J., 48:4 (1981), 873–885 | DOI | MR | Zbl

[JVH2] Jurkat W. B., Van Home J. W., “On the central limit theorem for theta series”, Michigan Math. J., 29:1 (1982), 65–77 | DOI | MR | Zbl

[JVH3] Jurkat W. B, Van Home J. W., “The uniform central limit theorem for theta sums”, Duke Math. J., 50:3 (1983), 649–666 | DOI | MR | Zbl

[Kli] Klingen H., Introductory lectures on Siegel modular forms, Cambridge Stud. Adv. Math., 20, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[LV] Lion G., Vergne M., The Weil representation, Maslov index and theta series, Progr. Math., 6, Birkhäuser, Boston, MA, 1980 | MR | Zbl

[Ma1] Marklof J., “Theta sums, Eisenstein series, and the semiclassical dynamics of a precessing spin”, Emerging Applications of Number Theory (Minneapolis, MN, 1996), IMA Vol. Math. Appl., 109, Springer, New York, 1999, 405–450 | MR | Zbl

[Ma2] Marklof J., “Limit theorems for theta sums”, Duke Math. J., 97:1 (1999), 127–153 | DOI | MR | Zbl

[Mo1] Moore C. C., “Ergodicity of flows on homogeneous spaces”, Amer. J. Math., 88 (1966), 154–178 | DOI | MR | Zbl

[Mo2] Moore C. C., “Exponential decay of correlation coefficients for geodesic flows”, Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (Berkeley, CA, 1984), Math. Sci. Res. Inst. Publ., 6, Springer-Verlag, New York–Berlin, 1987, 163–181 | MR

[Mum] Mumford D., Tata lectures on theta. I, Progr. Math., 28, Birkhäuser, Boston, MA, 1983 | MR | Zbl

[R] Ratner M., “On Raghunathan's measure conjecture”, Ann. of Math. (2), 134:3 (1991), 545–607 | DOI | MR | Zbl

[Sa] Samak P., “Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series”, Comm. Pure Appl. Math., 34:6 (1981), 719–739 | DOI | MR