On a~generalization of the Bernstein--Markov inequality
Algebra i analiz, Tome 14 (2002) no. 4, pp. 36-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that $$ \|P'Q\|_{L_p(I)}\leq c^{1+1/p}(N+M)\log(\min(N,M+1)+1)\|PQ\|_{L_p(I)} $$ for all real trigonometric polynomials $P$ and $Q$ of degree $N$ and $M$, respectively, where $0$, $I:=(-\pi,\pi]$, and $c>0$ is a suitable absolute constant. Also, it is shown that $$ \|f'g\|_{L_p(J)}\leq c^{1+1/p}(N+M)^2\|fg\|_{L_p(J)} $$ for all algebraic polynomials $f$ and $g$ of degree $N$ and $M$, respectively, where $0$, $J:=[-1,1]$, and $c>0$ is a suitable absolute constant. Both of the above trigonometric and algebraic results are sharp up to the factor $c^{1+1/p}$. In fact, the results are proved for the much wider classes of generalized trigonometric and algebraic polynomials.
@article{AA_2002_14_4_a2,
     author = {T. Erd\'elyi and J. Szabados},
     title = {On a~generalization of the {Bernstein--Markov} inequality},
     journal = {Algebra i analiz},
     pages = {36--53},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2002_14_4_a2/}
}
TY  - JOUR
AU  - T. Erdélyi
AU  - J. Szabados
TI  - On a~generalization of the Bernstein--Markov inequality
JO  - Algebra i analiz
PY  - 2002
SP  - 36
EP  - 53
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2002_14_4_a2/
LA  - en
ID  - AA_2002_14_4_a2
ER  - 
%0 Journal Article
%A T. Erdélyi
%A J. Szabados
%T On a~generalization of the Bernstein--Markov inequality
%J Algebra i analiz
%D 2002
%P 36-53
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2002_14_4_a2/
%G en
%F AA_2002_14_4_a2
T. Erdélyi; J. Szabados. On a~generalization of the Bernstein--Markov inequality. Algebra i analiz, Tome 14 (2002) no. 4, pp. 36-53. http://geodesic.mathdoc.fr/item/AA_2002_14_4_a2/