Interpolation of subspaces and applications to exponential bases
Algebra i analiz, Tome 13 (2001) no. 2, pp. 93-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Precise conditions are given under which the real interpolation space $[Y_0,X_1]_{\theta,p}$ coincides with a closed subspace of $[X_0,X_1]_{\theta,p}$ when $Y_0$ is a closed subspace of codimension one. This result is applied to the study of nonharmonic Fourier series in the Sobolev spaces $H^s(-\pi,\pi)$ with $0$. The main result looks like this: if $\{e^{i\lambda_nt}\}$ is an unconditional basis in $L^2(-\pi,\pi)$, then there exist two numbers $s_0$, $s_1$ such that for $s$ forms an unconditional basis in $H^s(-\pi,\pi)$, and for $s_1$ forms an unconditional basis of a closed subspace in $H^s(-\pi,\pi)$ of codimension one. If $s_0\le s\le s_1$, then the family $\{e^{i\lambda_nt}\}$ is not an unconditional basis in its span in $H^s(-\pi,\pi)$.
Keywords: Riesz basis, Sobolev space, $K$-functional, Muckenhoupt condition, nonharmonic Fourier series.
@article{AA_2001_13_2_a2,
     author = {S. Ivanov and N. Kalton},
     title = {Interpolation of subspaces and applications to exponential bases},
     journal = {Algebra i analiz},
     pages = {93--115},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2001_13_2_a2/}
}
TY  - JOUR
AU  - S. Ivanov
AU  - N. Kalton
TI  - Interpolation of subspaces and applications to exponential bases
JO  - Algebra i analiz
PY  - 2001
SP  - 93
EP  - 115
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2001_13_2_a2/
LA  - en
ID  - AA_2001_13_2_a2
ER  - 
%0 Journal Article
%A S. Ivanov
%A N. Kalton
%T Interpolation of subspaces and applications to exponential bases
%J Algebra i analiz
%D 2001
%P 93-115
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2001_13_2_a2/
%G en
%F AA_2001_13_2_a2
S. Ivanov; N. Kalton. Interpolation of subspaces and applications to exponential bases. Algebra i analiz, Tome 13 (2001) no. 2, pp. 93-115. http://geodesic.mathdoc.fr/item/AA_2001_13_2_a2/